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0 Program

Questo corso introduce gli elementi essenziali dell’Analisi Funzionale, rinviando le applicazioni
alle PDEs al relativo corso della laurea magistrale.

L’Analisi Funzionale rientra tra i requisiti per tutti i percorsi, salvo quelli in crittografia e
didattica, per la laurea magistrale in matematica a Trento.

Prerequisiti
Calcolo differenziale ed integrale, con serie di Fourier ed ODE (Analisi I, II e III).
Teoria della misura di Lebesgue e dell’integrazione (Analisi III).
Algebra lineare (Geometria I).
Topologia generale (Geometria II).

Programma
— Spazi di Banach. Spazi normati e di Banach. Lemma di Riesz e caratterizzazione degli

spazi di dimensione finita. Spazio degli operatori lineari e continui. Spazio duale.
Teoremi di Hahn-Banach, di Baire, di Banach-Steinhaus, dell’applicazione aperta, del grafico

chiuso. Teoremi di separazione.
Convergenze debole e debole star. Teoremi di Banach-Alaoglu e di Mazur. Seminorme e spazi

di Fréchet.
— Spazi di funzioni o di successioni. Ck, Lp, `p, c, ecc..
Definizioni e principali proprieta’ di questi spazi. Teorema di Ascoli-Arzelà.
— Spazi di Hilbert. Prodotto scalare, spazi di Hilbert. Ortogonalità. Proiezione ortogonale

su un convesso chiuso.
Teorema di rappresentazione di Riesz-Fréchet. Teorema di Lax-Milgram. Sistemi ortonormali,

basi hilbertiane, coefficienti di Fourier.
— Operatori lineari e continui. Operatori compatti in spazi di Banach. Teoria di Riesz-

Schauder ed alternativa di Fredholm.

Esercitazioni
Queste tratteranno semplici quesiti riguardanti la teoria sopra indicata.
Particolare attenzione verrà dedicata alla discussione di esempi e controesempi. Ad esempio,

alcuni controesempi potranno riguardare enunciati ottenuti rimuovendo un’ipotesi dai teoremi
sopra indicati.

Riferimento essenziale restano le note del corso.
Alcuni testi di consultazione:
R. Bhatia: Notes on Functional Analysis. (Lez. 1–15.) Hindustan Book Agency, New Delhi

2009 [un testo introduttivo]
H. Brezis: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer,

New York 2011 [un testo avanzato, con numerosi esercizi svolti]
G. Teschl: Topics in Real and Functional Analysis. (Part 1) Note disponibili in rete. [un

testo introduttivo]

Modalità di esame
Questo comprende una prova scritta con esercizi e quesiti di teoria, seguito da una prova orale.
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0.1 Note
In Heaven there is the golden Book of Mathematics, and of course it includes the proof of

every assertion. On the Earth any mathematical text includes unproved statements, as does
any other text of finite length.

In these notes, if nothing is mentioned, then it should be understood that the justification is
fairly simple and is left to the reader. In some cases the symbol [Ex] is appended, to mean that
the justification is not difficult and is explicitly proposed as an exercise. The symbol [] is used
to mean that the omitted justification is nontrivial.

A bullet • is used to mark the most important results. An asterisk * is used to mark parts
that may be skipped.

Chapter I – Banach spaces

Contents: 0. Review of Lp Spaces 1. Basic Notions. 2. Bases, Product and Quotient Spaces.
3. The Hahn-Banach Theorem. 4. Separation. 5. The Baire Theorem and its Consequences.

6. Weak Topologies. 7. Dimension. 8. Compactness. 9. The Ascoli-Arzelà Theorem. 10.
Adjoint Operator.

0 Review of Lp Spaces

0.1 Three fundamental inequalities

Lemma 0.1 (Young Inequality) For any p, q > 1 such that 1/p+ 1/q = 1,

ab ≤ ap

p
+
bq

q
∀a, b ≥ 0. (0.1)

Proof. Without loss of generality we can assume that a, b > 0. By the concavity of the
logarithm function we have

log
(ap
p

+
bq

q

)
≥ 1

p
log(ap) +

1

q
log(bq) = log a+ log b = log(ab) .

As the exponential function is monotone, by passing to the exponentials we get (0.1). 2

Let (A,A, µ) be a measure space with µ a positive measure, and denote byM(A,A, µ), or just
M(A), the linear space of equivalence classes of µ-a.e. coinciding measurable functions A→ K.
The sets

Lp(A) := {v ∈M(A) : ‖v‖p :=
( ∫

Ω |v(x)|p dµ(x)
)1/p

<∞} (0 < p <∞),

L∞(A) :=
{
v ∈M(A) : ‖v‖∞ := ess sup

Ω
|v| <∞

}
,

(0.2)

where ess supΩ |v| := infµ(N)=0 supx∈Ω\N |v(x)|, are linear subspaces of M(A).

• Theorem 0.2 (Hölder Inequality) For any p, q ∈ [1,+∞] with 1/p+ 1/q = 1, 1

uv ∈ L1(A),

∫
A
|u(x)v(x)| dµ(x) ≤ ‖u‖p‖v‖q ∀u ∈ Lp(A), ∀v ∈ Lq(A). (0.3)

1 Here and in the following, this means that q =∞ if p = 1, and p =∞ if q = 1.
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Proof. We may assume that u, v 6≡ 0 (the null function) and that both p and q are finite and
different from 1, since otherwise the result is trivial. After replacing u by ũ := u/‖u‖p and v by
ṽ := v/‖v‖q, we are reduced to proving that

ũṽ ∈ L1(A),

∫
A
|ũ(x)ṽ(x)| dµ(x) ≤ 1 ∀u ∈ Lp(A), ∀v ∈ Lq(A). (0.4)

The Young inequality (0.1) yields

|ũ(x)ṽ(x)| ≤ 1

p
|ũ(x)|p +

1

q
|ṽ(x)|q for a.e. x ∈ A.

Integrating over A we get ũṽ ∈ L1(A) and∫
A |ũ(x)ṽ(x)| dµ(x) ≤ 1

p

∫
A |ũ(x)|p dµ(x) + 1

q

∫
A |ṽ(x)|q dµ(x) = 1

p + 1
q = 1 ,

that is (0.4). 2

Proposition 0.3 (Minkowski Inequality) For any p ∈ [1,+∞],

‖u+ v‖p ≤ ‖u‖p + ‖v‖p ∀u, v ∈ Lp(A). (0.5)

Proof. We can confine ourselves to the case 1 < p < +∞, for otherwise the statement is
obvious. For a.e. x ∈ A,

|u(x) + v(x)|p ≤ 2p(max{|u(x)|, |v(x)|})p ≤ 2p
(
|u(x)|p + |v(x)|p

)
;

by integrating over A we conclude that u + v ∈ Lp(A). Setting q := p/(p − 1), by the Hölder
inequality we have

‖u+ v‖pp =

∫
A
|u(x) + v(x)||u(x) + v(x)|p−1 dµ(x)

≤
∫
A
|u(x)||u(x) + v(x)|p−1 dµ(x) +

∫
A
|v(x)||u(x) + v(x)|p−1 dµ(x)

≤
(
‖u‖p + ‖v‖p

)
‖ |u+ v|p−1‖q =

(
‖u‖p + ‖v‖p

)
‖u+ v‖p−1

p .

By dividing both members by ‖u+ v‖p−1
p , we get the desired inequality. 2

The Minkowski inequality is the triangular inequality for Lp spaces, which are thus normed
spaces. We shall see that these spaces are also complete, so that they are Banach spaces.

`p spaces and discrete inequalities. For any p ∈ [1,+∞], the Lp space constructed over the
set N equippped with the counting measure (i.e., the measure that associates to any finite subset
of N the number of its elements) is denoted by `p. These sequence spaces play an important role
in functional analysis.

Selecting A = {1, . . . ,M} and µ equal to the counting measure, the Hölder inequality provides
a discrete version for finite sums:∑M

n=1 |anbn| ≤
(∑M

n=1 |an|p
)1/p (∑M

n=1 |bn|q
)1/q

(0.6)

for any a1, ..., aM , b1, ..., bM ∈ C and any M ∈ N. Passing to the limit, one then gets the Hölder
inequality for `p spaces.
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Similarly, a discrete version of the Minkowski inequality provides the triangular inequality for
`p spaces.

0.2 Nesting of Lp and `p spaces

We claim that for any µ-measurable set A of finite measure and any p, q ∈ [1,+∞]

1 ≤ p < q ≤ +∞ ⇒ Lq(A) ⊂ Lp(A). (0.7)

This inclusion is easily checked if either p or q equals either 1 or +∞. [Ex] Let us then assume
that 1 < p < q < +∞. Notice that the exponents r = q/p and s = q/(q − p) are conjugate. For
any v ∈ Lq(A), the Hölder inequality then yields

‖v‖pp =
∫
A |v(x)|p · 1 dµ(x) ≤ ‖ |v(x)|p ‖r ‖1‖s = ‖v(x)‖pq µ(A)1/s.

This proves the claim. This inequality actually shows that the injection Lq(A) → Lp(A) is
continuous: if a sequence converges in Lq(A), then it converges to the same limit in Lp(A).

The analogous statement fails if µ(A) = +∞. For instance, let A = ] − 1,+∞[ and 1 ≤ p <
q < +∞; there exists α > 0 such that αp < 1 < αq; then x−α ∈ Lq(A) \ Lp(A).

For `p spaces the inclusions are reversed:

1 ≤ p < q ≤ +∞ ⇒ `p ⊂ `q. [Ex] (0.8)

Remark. Why are here inclusions reversed? This may be understood considering that func-
tions defined on a finite measure set may have a large Lp-norm only if somewhere they are large.
On the other hand sequences may have a large `p-norm only if they decay at infinity rather
slowly. Moreover the behaviors of powers of large real numbers is opposite to that of small
values: as p increases, xp increases for any x > 1, and instead decreases for any 0 < x < 1.
(This is clearly seen by drawing the graph of these functions.)

0.3 Some basic properties of Lp and `p spaces

These spaces play an important role in functional analysis, since they are a large source of
examples and counterexamples. Here we state some of their properties without proofs.

From now on, our measure space will be a (possibly unbounded) Euclidean open set (i.e., an
open subset of RN for some integer N), denoted by Ω, equipped with the standard Lebesgue
measure on the Borel σ-algebra. The following is a classical result of measure theory, and is at
the basis of the importance of these spaces for analysis.

• Theorem 0.4 (Fischer-Riesz) For any p ∈ [1,+∞], the normed space Lp(Ω) is complete. []

Lp-spaces are thus Banach spaces.
We shall denote by C0

c (Ω) the linear space of compactly supported continuous functions Ω→ R;
this is obviously a linear subspace of Lp(Ω) for any p ∈ [1,+∞].

• Theorem 0.5 (Density) For any p ∈ [1,+∞[, the linear space C0
c (Ω) is dense in Lp(Ω). This

fails for L∞(Ω). []

Proof. Let us fix any u ∈ Lp(Ω), which we can assume to be real and nonnegative without
loss of generality. The truncated functions

ũn(x) = min{u(x), n} ∀x ∈ B(0, n), ũn(x) = 0 ∀x ∈ Ω \B(0, n),
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are measurable and bounded, satisfy 0 ≤ un ≤ u and converge pointwise a.e. to u. Hence
un ∈ Lp(Ω) and un → u in Lp(Ω) by dominated convergence.

By a classical theorem of Lusin, 2 for any n there exists a compactly supported continuous
function vn : Ω → R such that, setting Ωn := {x ∈ Ω : un(x) 6= vn(x)} and |Ωn| ≤ n−(p+1).
Hence

‖un − vn‖pp =

∫
Ωn

|un − vn|p dx ≤
∫

Ωn

(2n)p dx ≤ 2p

n
→ 0

as n→∞. Therefore ‖u− vn‖p ≤ ‖u− un‖p + ‖un − vn‖p → 0 as n→∞. 2

C0
c (Ω) is not dense in L∞(Ω). For instance, the sign function (S(x) = −1 if x < 0, S(x) = 1

if x > 0) cannot be approximated by continuous functions in the metric of this space. Indeed a
uniform limit of continuous functions cannot be continuous.

Theorem 0.6 For any p ∈ [1,+∞[, the space Lp(Ω) is separable (i.e., it has a countable dense
subset). This fails for L∞(Ω). []

Outline of the proof. First notice that Ω can be represented as the union of a countable family
{Kn} of compact subsets. As on any compact set the Lp-norm is dominated by the uniform
norm, by the above density theorem it suffices to approximate uniformly any function of C0(Kn).
By taking coefficients with rational real and imaginary part, and by extending polynomials by
null outside the support of the approximated function, by the classical Weierstraß theorem 3 for
any n one gets a countable family of functions that uniformly approximate all functions that
are supported in Kn. 2

In L∞(Ω) counterexamples are easily constructed.

• Theorem 0.7 (Fréchet-Riesz) Let p ∈ ]1,+∞[ and set p′ = p/(1 − p) (this is the conjugate
exponent). Then

[Φp(f)](v) :=
∫

Ω fv dx ∀f ∈ Lp′(Ω), ∀v ∈ Lp(Ω) (0.9)

defines an isometric isomorphism Φp : Lp
′
(Ω)→ Lp(Ω)′. []

* Proof. (i) By the Hölder inequality (0.3)

Φp(f) ∈ Lp(A)′, ‖Φp(f)‖Lp(A)′ ≤ ‖f‖Lp′ (A) ∀f ∈ Lp′(A); (0.10)

thus Φp(L
p′(A)) ⊂ Lp(A)′.

(ii) In order to prove the opposite inclusion, let us first show that Φp(L
p′(A)) is a closed

subspace of Lp(A)′. As p = p′/(p′ − 1), by choosing 4 v = |f |p′−2f we get |v|p = |f |p′ , whence

‖f‖p
′−1

Lp′ (A)
=
(∫

A
|f |p′ dµ

)(p′−1)/p′

=
(∫

A
|v|p dµ

)1/p
= ‖v‖Lp(A).

2 Lusin’s Theorem: Let Ω be an open subset of RN equipped with the ordinary Lebesgue measure, and
u : Ω → C be defined everywhere. Then u is measurable iff for any ε > 0 there exists a compactly supported
continuous function v : Ω→ C such that |{x ∈ Ω : u(x) 6= v(x)}| ≤ ε and supΩ |v| ≤ supΩ |u|.

3 Weierstraß Theorem: If K is a compact subset of RN , then the linear space of (the restrictions of )
polynomials is dense in C0(K).

4 By f we denote the complex conjugate of f .
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Therefore, as fv = |f |p′ ,

[Φp(f)](v) =

∫
A
fv dµ = ‖f‖p

′

Lp′ (A)
= ‖f‖Lp′ (A)‖v‖Lp(A);

thus equality holds in (0.10), so that Φp is an isometry. As Lp
′
(A) is complete, Φp(L

p′(A)) is a
closed subspace of Lp(A)′.

(iii) In order to show that Φp(L
p′(A)) = Lp(A)′, next we prove that the former space is dense

in the second. Because of a Corollary of the Hahn-Banach theorem (see ahead) and of the
reflexivity of Lp(A), it suffices to show that

v ∈ Lp(A), [Φp(f)](v) = 0 ∀f ∈ Lp′(A) ⇒ v = 0 a.e. in A.

Setting g = |v|p−2v ∈ Lp′(A), we get [Φp(g)](v) =
∫
A gv dµ =

∫
A |v|

p dµ. Therefore [Φp(f)](v) =
0 entails v = 0. 2

Next we consider the dual space of L1(Ω) and of L∞(Ω).

Theorem 0.8 (Steinhaus-Nikodým) Φ1 : L∞(Ω)→ L1(Ω)′ is an isometric isomorphism. []

Proposition 0.9 Define the operator Φ∞ : L1(Ω)→ L∞(Ω)′ as in (0.9), with ∞′ = 1. This is
a nonsurjective isometry. []

Conclusions. For any p ∈ [1,+∞[ (p = ∞ excluded), denoting the conjugate index by p′, we
can identify Lp(Ω)′ with Lp

′
(Ω). This fails for p =∞, since

we can just identify L1(Ω) with a proper closed subspace of L∞(Ω)′. (0.11)

More generally, the same holds for any measure space (A,A, µ): 5 we can thus identify (`p)′

with `p
′

for any p ∈ [1,+∞[, but we can just identify `1 with a proper closed subspace of (`∞)′.
Although in general L1(Ω) need not have a predual, we saw that one may identify `1 with

(c0)′. 6 Thus `1 is the dual of a separable Banach space, at variance with L1(Ω).

An Exercise.
(i) For any p ∈ [1, 2], prove that Lp(R) ⊂ L1(R) + L2(R).
(ii) More generally, for any p, q, r ∈ [1,+∞], prove that if p < q < r then Lq(R) ⊂ Lp(R) +

Lr(R).
(iii) Is `q ⊂ `p + `r for any p, q, r ∈ [1,+∞] with p < q < r?

1 Basic Notions

In this section we present the definition of a normed space and some basic constructions.

1.1 Normed and Banach spaces

5 for p = 1 (and just for this index) the measure should be assumed σ-finite; that is, the set A should be
representable as a countable union of sets of finite measure.

6 With standard notation, we shall denote by c the set of converging sequences, by c0 the set of sequences that
tend to 0, and by c00 the set the sequences that have just a finite number of nonvanishing terms. All of these are
normed subspaces of `∞; c and c0 are complete., whereas c is not.
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A linear space X over K (= C or R) is called a normed space iff it is equipped with a norm,
namely, a function ‖ · ‖ : X → R+ such that, for any u, v ∈ X and any λ ∈ K,

‖u‖ = 0 ⇔ u = 0,

‖λu‖ = |λ|‖u‖,

‖u+ v‖ ≤ ‖u‖+ ‖v‖.

(1.12)

The function d(u, v) := ‖u − v‖ is then a distance (or metric) in X. It is easy to check the
inverse triangle inequality

‖u− v‖ ≥
∣∣‖u‖ − ‖v‖∣∣ ∀u, v ∈ X. (1.13)

Any norm ‖ · ‖ on X induces a topology τ , called the strong topology or norm topology.
We say that a sequence {un} in a normed space X converges iff d(un, u) → 0 for a suitable
u ∈ X, and then writes un → u. If un → 0, one calls {un} a vanishing sequence. We say
that the series

∑∞
n=1 un converges iff the sequence of its partial sums {Sm :=

∑m
n=1 un}m∈N

converges.
A normed space that is complete w.r.t. d is called a Banach space. E.g., taking the absolute

value (the modulus, resp.) as a norm, R (C resp.) becomes a Banach space. More examples are
given below.

If X is a linear space we define a seminorm as a mapping p : X → R+ such that, for any
u, v ∈ X and any λ ∈ K,

p(λu) = |λ|p(u),

p(u+ v) ≤ p(u) + p(v),
(1.14)

whence p(0) = 0. Thus p has all the properties of a norm, except that p(u) = 0 does not entail
u = 0. A linear space equipped with a seminorm is called a seminormed space.

Proposition 1.1 Any linear subspace M of a normed space X is a normed subspace of X. If
X is a Banach space, then so is M iff it is closed. [Ex]

Henceforth, a closed subspace of a normed space X is understood to be a closed linear
subspace of X. (Thus, a closed subspace is closed with respect to addition, scalar multiplication,
and convergence.) Note that the closure M of a linear subspace M is a closed subspace.

1.2 Examples of normed spaces
(i) First we consider the spaces RN and CN for any integer N > 0. 7 For any p ∈ [1,∞[,

‖u‖p :=

(∑N
k=1 |uk|p

)1/p

∀u = (u1, . . . , uN ) ∈ KN , K = R or C, (1.15)

defines a norm. For p > 1 the triangle inequality is just a restatement of the classical Minkowski
inequality, see Proposition 0.3:(∑N

k=1 |uk + vk|p
)1/p

≤
(∑N

k=1 |uk|p
)1/p

+

(∑N
k=1 |vk|p

)1/p

. (1.16)

7 By convention, R0 := {0}; this is referred to as the trivial space, and will always be excluded.
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For p =∞, we define

‖u‖∞ := max
1≤k≤N

|uk| ∀u = (u1, . . . , uN ) ∈ KN , K = R or C. (1.17)

In RN , the special case p = 2 corresponds to the Euclidean distance d(u, v) :=
(∑N

k=1 |uk −
vk|2

)1/2
, and RN is called the Euclidean space of dimension N in this case.

(ii) For any p ∈ [1,∞[, the sequence space `pK (or `p, shortly) consists of all sequences
u = {un} such that

‖u‖p :=

(∑∞
k=1 |uk|p

)1/p

< +∞. (1.18)

Passing to the limit as N →∞ in (1.16) first on the right- and then on the left-hand side, we see
that `pK is closed under addition and that ‖ · ‖p fulfills the triangle inequality; thus we conclude
that `pK is a normed space. 8

(iii) For any nonempty set A, let us denote by B(A;K) the set of bounded functions A→ K.
This is a linear subspace of KA, and is a Banach space equipped with the so-called uniform
norm (or sup-norm)

‖f‖∞ = sup
x∈A
|f(x)|. (1.19)

This topology induces the uniform convergence in A.

(iv) Let A be a compact topological space; A = [0, 1], say. Since the uniform limit of con-
tinuous functions is again continuous, the linear space of continuous functions C0([0, 1];K) is a
closed subspace of B([0, 1];K), hence also a Banach space.

(v) For A = N, B(A;K) can be identified with `∞. Furthermore, the convergent sequences
and the vanishing sequences form two closed subspaces of `∞, which are respectively denoted
by c and c0; these are themselves Banach spaces.

(vi) We define c00 to be the linear space of finite sequences, that is, of sequences u = {un}
such that un 6= 0 for at most finitely many n. Then c00 is a linear subspace of all sequence spaces
defined above in (ii) and (v); it is not closed (hence, not complete) in the respective norms. The
closure of c00 equals `p for p <∞, and c0 (not `∞!) for p =∞.

(vii) Let us denote by M̃(R;K) the space of all functions on R that are measurable with respect
to the Lebesgue measure, and by M(R;K) the quotient obtained by identifying functions that

8 To show that `pK is complete, let {un} with un = {unk}k∈N be a Cauchy sequence in `pK. Since |unk − umk | ≤
‖un − um‖p, for any k ∈ N the sequence of components {unk}n∈N is a Cauchy sequence in K; hence it converges.
Let u = {uk} be the sequence defined by uk = limn→∞ u

n
k . For any given ε > 0, let us choose ñ such that

‖un − um‖p =

(∑∞
k=1 |u

n
k − umk |p

)1/p

≤ ε ∀m,n ≥ ñ.

Moreover, for any N choose m̃ ≥ ñ such that
(∑N

k=1 |u
m̃
k − uk|p

)1/p ≤ ε. The Minkowski inequality (1.16) then
implies that (∑N

k=1 |u
n
k − uk|p

)1/p

≤
(∑N

k=1 |u
n
k − um̃k |p

)1/p

+
(∑N

k=1 |u
m̃
k − uk|p

)1/p

≤ 2ε

for all n ≥ ñ and N ∈ N. Passing to the limit N → ∞, first we see that un − u ∈ `pK, whence u ∈ `pK, and then
that ‖un − u‖p → 0. 2
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coincide almost everywhere. (We shall systematically assume this identification.) Let us set

Lp(R;K) :=
{
v ∈M(R;K) : ‖v‖p :=

(∫
R
|v(x)|p dx

)1/p
< +∞

}
∀p ∈ [1,∞],

L∞(R;K) :=
{
v ∈M(R;K) : ‖v‖∞ := ess sup

x∈R
|v(x)| < +∞

}
.

(1.20)

For any measure space (A,A, µ), one similarly defines Lp(A,A, µ;K), which is often abbrevi-
ated to Lp(A;K) or even Lp(A). In Section XXX we shall see that these are Banach spaces for
any p ∈ [1,∞].

Other examples of noncomplete normed spaces are: C1(K) equipped with the norm of C0(K);
C0(K) equipped with the norm of Lp(K) with 1 ≤ p < +∞; Lp(A) equipped with the norm of
Lq(A) with 1 ≤ q < p if µ(A) < +∞; `p equipped with the norm of `q with p < q.

1.3 Linear and continuous mappings
If X is a linear space over K, then the set of all linear functionals from X to K is called the

algebraic dual space of X; we shall denote it by X#.
If X is a normed space, then the set of all linear and continuous functionals 9 we shall denote

it by X ′. The space X is then called a pre-dual of X ′. Ahead we shall see that not all spaces
have a pre-dual, and that this need not be unique.

The dual (X ′)′ of the dual X ′ of a normed space X is called the bidual space (or simply the
bidual) of X, and is denoted by X ′′. A canonical embedding J : X → X ′′ is defined by setting

(Ju)(f) = f(u) ∀u ∈ X,∀f ∈ X. (1.21)

If J(X) = X ′′, the space X is called reflexive.
More generally, if X1 and X2 are normed spaces over the same field, 10 the set of all linear

and continuous mappings from X1 to X2 is denoted by L(X1;X2), or L(X1) if X1 = X2.
A subset A of a normed space is called bounded iff supu∈A ‖u‖ is finite. A mapping L : X1 →

X2 between normed spaces is called bounded iff it maps bounded subsets of X1 to bounded
subsets of X2.

Proposition 1.2 Let L : X1 → X2 be a linear mapping between normed spaces X1 and X2.
Let us denote the norm of Xi by ‖ · ‖i, i = 1, 2. Then the next three properties are mutually
equivalent:

L is continuous, (1.22)

L is bounded, (1.23)

∃C > 0 : ∀u ∈ X1, ‖Lu‖2 ≤ C‖u‖1, (1.24)

∃C > 0 : ∀u, v ∈ X1, ‖Lu− Lv‖2 ≤ C‖u− v‖1. (1.25)

Proof. First we show by contradiction that (1.22) implies (1.23). If (1.23) does not hold, then
‖Lvn‖2 > n for some sequence {vn} with ‖vn‖1 6= 0 for any n. Hence un = vn/(n‖vn‖1) → 0
while ‖Lun‖2 > 1. This contradicts (1.22).

If (1.23) holds then
sup{‖Lv‖2 : u ∈ X1, ‖v‖1 = 1} ≤ C < +∞.

9 We shall use this terminology: functions map numbers to numbers, functionals map functions to numbers,
operators map functions to functions.

10 Henceforth this will be implied.
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As any u ∈ X1 is of the form u = ‖u‖1v with ‖v‖1 = 1, (1.24) follows.
By replacing u by u− v in (1.24), we get (1.25). Finally, (1.25) obviously yields (1.22). 2

Proposition 1.3 For any normed spaces X1 and X2, if X1 is isomorphic to KN for some N ,
then any linear mapping L : X1 → X2 is continuous. [Ex]

Theorem 1.4 For any normed spaces X1 and X2, L(X1;X2) is a normed space equipped with
the norm

‖L‖L(X1;X2) := sup{‖Lu‖ : u ∈ X1, ‖u‖ ≤ 1} ∀L ∈ L(X1;X2). (1.26)

If X2 is a Banach space, then L(X1;X2) is a Banach space.

Proof. We leave the proof of the first statement to the reader, and just prove the second one.
Let {Ln} be a Cauchy sequence in L(X1;X2). For any u ∈ X1, by (1.25) {Lnu} is then a

Cauchy sequence in X2. By the completeness of this space, Lu := limn→∞ Lnu then exists.
It is easily seen that the linearity of the Lns implies that of L. By the continuity of the
norm, ‖Lu‖ = limn→∞ ‖Lnu‖ ≤ supn ‖Ln‖‖u‖. By the boundedness of Cauchy sequences,
C = supn ‖Ln‖ is finite. (1.24) is thus fulfilled, and L is then continuous.

Finally, we show that Ln → L. As {Ln} is a Cauchy sequence, for any ε > 0 there exists ñ ∈ N
such that ‖Lm−Ln‖ ≤ ε for any m > n ≥ ñ. For any u ∈ X1 we thus have ‖Lmu−Lnu‖ ≤ ε‖u‖.
Taking the limit as m → ∞, we get ‖Lu − Lnu‖ ≤ ε‖u‖, whence ‖L − Ln‖ ≤ ε for any n ≥ ñ.
Thus Ln → L in L(X1;X2). 2

In the special case X2 = K, setting X1 = X in (1.26) defines the dual norm

‖f‖X′ := sup{|f(u)| : u ∈ X, ‖u‖ ≤ 1} ∀f ∈ X ′.

Corollary 1.5 The dual of any normed space is a Banach space.

Henceforth we shall assume that X1 6= {0}, 11 so that

‖L‖L(X1;X2) = sup {‖Lu‖ : u ∈ X1, ‖u‖ = 1}
= sup {‖Lu‖/‖u‖ : u ∈ X1, ‖u‖ 6= 0} .

(1.27)

Notice that
‖Lu‖ ≤ ‖L‖‖u‖ ∀u ∈ X, (1.28)

as ‖L‖ is the smallest constant to be used in the place of C in (1.24). From (1.28) it easily
follows that, for any L1 ∈ L(X1;X2) and L2 ∈ L(X2;X3),

‖L2 ◦ L1‖L(X1;X3) ≤ ‖L2‖L(X2;X3)‖L1‖L(X1;X2).

Proposition 1.6 Let M be a linear and dense subspace of a normed space X1, and X2 be a
Banach space. Then every L ∈ L(M ;X2) can be uniquely extended to an operator L̃ ∈ L(X1;X2).

Proof. For any u ∈ X1 and any sequence {un} in M converging to u, let us set L̃u =
limn→∞ Lun. The mapping L̃ : X1 → X2 is a well-defined and continuous, since L is uniformly
continuous on the dense subspace M and X2 is complete. The linearity of L̃ directly follows
from its definition. 2

11 This also is a Banach space!
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A linear mapping L between two linear spaces X1 and X2 is called an algebraic isomorphism
iff it is linear and bijective; the same then holds for its inverse L−1. We then write X1 ∼ X2.

A mapping L ∈ L(X1;X2) between normed spaces X1 and X2 is called a topological isomor-
phism (or simply an isomorphism) 12 iff it is bijective and its inverse L−1 is also continuous,
that is, L−1 ∈ L(X2;X1). We then write X1 ' X2. 13

A linear mapping L between normed spaces X1 and X2 is called an isometry iff ‖Lu‖ = ‖u‖
for every u ∈ X1. (This makes sense since then Lu = 0 only if u = 0, so L is injective.) If
moreover L is surjective, L is called an isometric isomorphism. The spaces X1 and X2 are
then called isometrically isomorphic, and we write X1

∼= X2. In this case the spaces X1 and X2

have the same metric structure, as ‖Lu−Lv‖ = ‖L(u− v)‖ = ‖u− v‖ for every u, v ∈ X1. Both
L and L−1 are then linear and continuous, and ‖L‖ = ‖L−1‖ = 1.

1.4 Examples of topological dual spaces
(i) For any N ≥ 1, the dual (KN )′ is isometrically isomorphic to KN via the canonical

isomorphism L : KN → (KN )′, which is defined by

(Lu)(v) =
∑N

k=1 ukvk ∀u, v ∈ KN . [Ex]

(ii) The dual of c0 is isometrically isomorphic to `1, because of the next statement.

Theorem 1.7 The mapping L : `1 → c′0 defined by

(Lu)(v) =
∑∞

k=1 ukvk ∀u ∈ `1,∀v ∈ c0 (1.29)

is a surjective isometry.

Proof. This series is absolutely convergent and bounded by ‖u‖1‖v‖∞; thus

Lu ∈ c′0, ‖Lu‖c′0 ≤ ‖u‖1. (1.30)

For any given u ∈ `1 with u 6= 0 and any n ∈ N, let us define vn ∈ c0 by vnk = sign(uk) if k ≤ n
and vnk = 0 otherwise. Then ‖vn‖c0 = 1 for any n, and

‖u‖1 = lim
n→∞

n∑
k=1

|uk| = lim
n→∞

n∑
k=1

ukv
n
k

≤ lim sup
n→∞

‖Lu‖c′0‖v
n‖c0 = ‖Lu‖c′0 .

(1.31)

Hence ‖u‖1 = ‖Lu‖c′0 .
It remains to show that L is surjective. Let f ∈ c′0 be given, for any k ∈ N let us denote by ek

the k-th unit vector (i.e., ek,j = δkj), and set uk = f(ek). For any n, ‖
∑n

k=1 sign(uk)ek‖c0 = 1.
We then have ∑n

k=1 |uk| =
∑n

k=1 sign(uk) · f(ek) = f (
∑n

k=1 sign(uk)ek) ≤ ‖f‖c′0 .

So u = {uk} ∈ `1 and

f(v) =
∑∞

k=1 vkf(ek) =
∑∞

k=1 vkuk = (Lu)(v) ∀v ∈ c0.2

12The terms isomorphism of normed spaces and linear homeomorphism are also used in the literature.
13Thus, an isomorphism of normed spaces is both an algebraic isomorphism and a homeomorphism in the sense

of topology.
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(iii) The mapping defined by (1.29) also provides a surjective isometry between `p
′

and the
dual of `p, if 1 ≤ p < +∞ and p′ = p/(p − 1) which is called the dual exponent of p. The
structure of this proof is the same as for the Proposition above; for p > 1 one uses the Hölder
inequality. [Ex] Notice that we are excluding p = +∞; we shall come back to this issue ahead.

(iv) Let A be a compact subset of RN . It can be proved that the dual space of C0(A;K) is
isometrically isomorphic to (hence, identifiable with) the space of finite regular signed measures
on the Borel σ-algebra on A. Thus, any continuous linear functional f on C0(A;R) can be
represented as an integral

f(u) =
∫
A u(x) dµ(x)

for some finite regular signed measure µ.
(v) By the Fréchet-Riesz theorem, the dual of the space Lp(A) is isometrically isomorphic to

Lp
′
(A) for 1 ≤ p <∞, where p′ is the dual exponent.

* (vi) It can be proved that the dual of L∞(A) is isometrically isomorphic to the space of
finitely additive measures on A and contains L1(A) as a proper closed subspace.

1.5 Examples of bounded operators
(i) As we already stated, for any matrix A ∈ KM,N , the associated linear mapping

L : KN → KM , (Lu)j =
∑N

k=1 ajkuk, 1 ≤ j ≤M

is bounded.
(ii) The right (or forward) shift Sr and the left (or backward) shift Sl

(Sru)k = uk−1, (S`u)k = uk+1, (1.32)

are most naturally defined on doubly infinite sequences {uk}k∈Z; obviously they are isometric
isomorphisms on `pK(Z) for any p ∈ [1,∞]. For unilateral sequences u = (u1, u2, . . . ) one sets

Sr(u1, u2, . . . ) = (0, u1, u2, . . . ), S`(u1, u2, . . . ) = (u2, u3, . . . ).

In this case Sr, S` still belong to L(X) for X = `pK(N), but they are no longer isomorphisms.
(iii) For any p ∈ [1,∞], if a ∈ L∞(A,A, µ), then the multiplication operator defined by

(Lau)(x) = a(x)u(x) for a.e. x ∈ A

belongs to L(Lp(A)), and ‖La‖ = ‖a‖∞. Similarly, if A is a compact metric space and a ∈ C0(A),
then La ∈ L(C0(A)) and ‖La‖ = ‖a‖∞.

(iv) Let (A,A, µ) and (B,B, ν) be two σ-finite measure spaces, k ∈ L2(A×B), and set

(Lu)(x) =
∫
B k(x, y)u(y) dµ(y) for a.e. x ∈ B, ∀u ∈ L2(B). (1.33)

By the classical theorems of Tonelli and Fubini and the Hölder inequality, Lu is an a.e. well-
defined and measurable function, and∫

A

∣∣∫
B k(x, y)u(y) dν(y)

∣∣2 dµ(x) ≤
∫
A

∫
B |k(x, y)|2 dν(y) dµ(x) ·

∫
B |u(y)|2 dν(y).

L is thus a bounded linear mapping from L2(B) to L2(A), and

‖L‖ ≤
∫∫
A×B |k(x, y)|2 dµ(y) dν(x).

The function k is called the kernel of the integral operator L.
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If A = B = [a, b] and µ = ν is the Lebesgue measure, then the operators

(L1u)(x) =
∫ b
a k(x, y)u(y) dy, (L2u)(x) =

∫ x
a k(x, y)u(y) dy ∀x ∈ [a, b],

are respectively called Fredholm and Volterra integral operators.
(v) An infinite matrix A = (ajk) defines a bounded linear mapping between sequence spaces

by the formula
(Lu)j =

∑∞
k=1 ajkuk, 1 ≤ j <∞. (1.34)

The estimate ∑∞
j=1 (

∑∞
k=1 |ajkuk|)

2 ≤
(∑∞

j,k=1 |ajk|2
)∑∞

k=1 |uk|2 (1.35)

follows from the Hölder inequality. If
∑

j,k |ajk|2 < +∞, this entails that L ∈ L(X) for X = `2,

with ‖L‖2 ≤
∑

j,k |ajk|2. This condition, however, is not necessary: e.g., the unit matrix does
not satisfy it. Indeed, in the diagonal case (Lu)k = αkuk, we have L ∈ L(X), X = `p, iff
‖α‖∞ <∞. One may ask for conditions, in terms of the elements of A, which are necessary as
well as sufficient in order that (1.34) defines a bounded linear mapping from `p to `q. However,
no “useful” ones are known for p, q ∈ ]1,∞[.

2 Bases and Finite Dimensional Spaces

2.1 Bases and dimension
Hamel bases. A subset S of a linear space X is called a Hamel basis (or algebraic basis) iff
every element of X has a representation as a linear combination of elements of S, 14 and this
representation is unique. This holds iff S is linearly independent (i.e., any linear combination
of its elements vanishes only if all its coefficients vanish), and S is maximal among all linearly
independent subsets of X.

Let us recall the classical Hausdorff maximality principle: 15

Theorem 2.1 In a partially ordered set, every totally ordered subset is contained in a maximal
totally ordered subset.

Proposition 2.2 Any linear space X has a Hamel basis.

Proof. Let us first order by inclusion the family A (⊂ P(S)) of all linearly independent subsets
of X. (Thus Σ ⊂ P(S) for any Σ ∈ A.) By the Hausdorff principle, there exists a maximal
totally ordered subset Σ of A. Thus

⋃
{A : A ∈ Σ} (⊂ P(S)) is linearly independent and

maximal among all linearly independent subsets of X. 2

If a Hamel basis is either finite, or countably infinite or uncountably infinite, the same holds
for any other Hamel basis; in the finite case, moreover, any pair of Hamel bases have the same
number of elements. [Ex] We can thus define the (Hamel) dimension of the space to be either
finite, or countably infinite, or uncountably infinite, depending on any of its Hamel bases. (This
is thus a purely algebraic notion.) In the finite case, the number of elements of any Hamel basis
is called the dimension of the space.

14 For us linear combinations are always finite. Notice that, without a notion of convergence, there is no natural
way to define infinite linear combinations.

15 We shall often apply this principle, which is equivalent to the Zorn Lemma (3.1) as well as to the axiom of
choice, and might be often replaced by either of them.
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In Proposition 5.2 we shall see that no Banach space has countable infinite dimension.

Schauder bases. A sequence {un} in X is called a Schauder basis (or a topological basis)
iff every u ∈ X has a unique representation of the form

u =
∑∞

n=1 anun with an ∈ K,∀n.

This may depend on the order in which the elements un are enumerated; in other terms, a
reordering of a Schauder basis need not be a Schauder basis. [] Obviously, any Schauder basis
is a linearly independent subset.

A topological space is called separable iff it has a countable dense subset. 16

Proposition 2.3 If a normed space has a Schauder basis, then it is separable.

Proof. (Finite) linear combinations of elements of the basis with rational coefficients form a
countable dense subset of the set of all linear combinations of elements of the basis, and by
hypothesis this latter set is dense X. 2

On the other hand, unexpectedly there exist separable Banach spaces without any Schauder
basis. (Counterexamples are nontrivial.) []

2.2 Isomorphisms and comparison of norms
Let a linear space X be equipped with two norms ‖ · ‖1 and ‖ · ‖2. We say that ‖ · ‖1 is weaker

than ‖ · ‖2 on X (and ‖ · ‖2 is stronger than ‖ · ‖1) 17 iff there exists C > 0 such that

‖u‖1 ≤ C‖u‖2 ∀u ∈ X, (2.1)

or equivalently, iff the identity mapping j from (X, ‖ · ‖2) to (X, ‖ · ‖1) is continuous. The two
norms are called equivalent iff j is a topological isomorphism, or equivalently, iff there exist
constants c, C > 0 such that

c‖u‖1 ≤ ‖u‖2 ≤ C‖u‖1 ∀u ∈ X. (2.2)

In terms of the induced topologies τ1 in (X, ‖ · ‖1) and τ2 in (X, ‖ · ‖2), this means that ‖ · ‖2
is stronger than ‖ · ‖1 iff τ2 ⊃ τ1 (i.e., τ2 is finer than τ1), and the two norms are equivalent iff
τ1 = τ2.

Remark. An infinite-dimensional Banach space may be isomorphic to a proper subspace
of itself. Indeed, the space c0 of vanishing sequences is a proper subspace of the space c of
convergent sequences, and defining the mapping L : c→ c0 by

(Lu)1 = lim
n→∞

un, (Lu)k = uk−1 − lim
n→∞

un ∀k > 1, (2.3)

for any u = {un} ∈ c, L is an isomorphism. [Ex]

2.3 Product spaces
Let (Xj , ‖ · ‖j) be normed spaces over the field K, where 1 ≤ j ≤ N and N ∈ N. We can equip

the product space X =
∏N
j=1Xj with a norm as follows, for any p ∈ [1,∞]:

‖u‖p =


(∑N

j=1 ‖uj‖
p
j

)1/p
if 1 ≤ p < +∞,

max1≤j≤N ‖uj‖j if p =∞.
(2.4)

16 Despite of the similarity of these terms, there is no relation between separability and the separation properties
(e.g., the Hausdorff property) of topological spaces.

17 By a standard terminology, “weaker” actually means “weaker or equal”; and similarly for “stronger”.
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Proposition 2.4 The formula (2.4) defines a norm on the product space X =
∏N
j=1Xj. This

is a Banach spaces iff so are all the Xjs. [Ex]

Since all norms on RN are equivalent, different choices of p in (2.4) lead to equivalent norms
on the product space X. So whether another normed space Y is isomorphic to X does not
depend on p. On the other hand, whether the two spaces are isometrically isomorphic depends
on p. In this context there is no canonical choice of the norm of the product space.

Associated with the product there are the canonical projections

pj : X → Xj , pj(u1, . . . , uN ) = uj , (2.5)

and the canonical injections

ij : Xj → X, ij(uj) = (0, . . . , 0, uj , 0, . . . , 0). (2.6)

It is obvious from the definitions that, for any j ∈ {1, . . . , N}, the injection ij is an isometry,
and that pj ∈ L(X;Xj) with ‖pj‖L(X;Xj) = 1 (unless Xj is the trivial space).

The dimension of X is related to the dimension of its factors Xj by the formula

dim (X) =
∑N

j=1 dim (Xj). (2.7)

(This sum is assumed to be infinite if so is at least one of the addenda.) Indeed, if Vj is a Hamel

basis of Xj , 1 ≤ j ≤ N , then V :=
⋃N
j=1 ij(Vj) is a Hamel basis of X.

2.4 Quotient spaces
If X is a linear space and M is a linear subspace of X, the quotient space X/M consists of

all equivalence classes [u] of elements u ∈ X with [u] = [v] iff u− v ∈M . Setting

[u] + [v] = [u+ v], λ[u] = [λu] ∀u, v ∈ X,∀λ ∈ K,

The linear mapping q : X → X/M defined by q(u) = [u] is called the quotient mapping. The
dimension of X/M is called the codimension of M in X 18.

Proposition 2.5 Let M be a closed subspace of a normed space X. Then 19

‖[u]‖ := inf
v∈M
‖u− v‖ = inf

v∈[u]
‖v‖ (2.8)

defines a norm on X/M with ‖[u]‖ ≤ ‖u‖ for all u ∈ X. This norm is called the quotient
norm. The quotient mapping q : X → X/M : u 7→ [u] is continuous.

If X is a Banach space, then so is X/M .

Proof. If ‖[u]‖ = 0, then ‖u − vn‖ → 0 for some sequence {vn} in M ; so u ∈ M since M is
closed, and thus [u] = 0. The seminorm properties (1.14) are obvious from the definitions, as
well as the continuity of q.

Let now {[un]} be a Cauchy sequence in X/M . Possibly passing to a subsequence and rela-
beling, we may assume that ‖[un] − [un−1]‖ ≤ 2−n. We may successively choose ũn ∈ [un] for
any n such that

‖ũn − ũn−1‖
(2.8)

≤ 2‖[un]− [un−1]‖ ≤ 21−n.

18We will see later that the dimension of X/M equals the dimension of any complement of M .
19 ‖[u]‖ equals the distance d(u,M) between u and M , according to the customary definition of the distance

between a point and a set.
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Then {ũn} is a Cauchy sequence in X. If X is complete, then there exists u = lim ũn, and we
get [un]− [u] = [ũn]− [u] = [ũn − u]→ 0. 2

If M is a linear but nonclosed subspace of X, then (2.8) defines a seminorm; this is not a norm
since ‖[u]‖ = 0 for any u ∈M \M .

2.5 Series
A series

∑∞
n=1 un in a normed space X is called convergent iff the sequence formed by its

partial sums {Sm =
∑m

n=1 un} converges in X. The series is called totally (or absolutely)
convergent iff the numerical series

∑∞
n=1 ‖un‖ converges (in R).

Proposition 2.6 Prove that a normed space X is complete iff any totally convergent series in
X is convergent.

Proof. (i) “If”-part. Let {uj} be a Cauchy sequence in X, and recursively construct a subse-
quence {unj} as follows: for any j, nj is selected so that nj > nj−1 and ‖unj − um‖ ≤ 2−j for
any m > nj . Therefore ‖unj+2 − unj+1‖ ≤ 2−j for any j, whence

∑∞
j=1 ‖unj+1 − unj‖ < +∞.

The sequence {unj} then converges.
(ii) “ Only if”-part. It suffices to notice that a sequence {uj} is convergent if so is {‖uj‖},

since ∥∥∥∥ m∑
j=n

uj

∥∥∥∥ ≤ m∑
j=n

‖uj‖ ∀n,m ∈ N (n < m).2

2.6 Algebraically complements and direct sums

The notion of projection somehow bridges linear, Banach and Hilbert spaces. First we address
the algebraic side. Let M1 and M2 be two linear subspaces of a linear space V , and set

V = M1 ⊕M2 ⇔ M1 +M2 = V, M1 ∩M2 = {0}. (2.9)

This holds iff for any x ∈ V there exists one and only one pair (x1, x2) ∈ M1 ×M2 such that
x = x1 +x2. We then say that V is the algebraic direct sum of M1 and M2, that M1 and M2

algebraically complement (or supplement) each other, and that they are algebraically com-
plemented. Notice that then M1 is isomorphic to the quotient space X/M2, and symmetrically
M2 is isomorphic to the quotient space X/M1. The dimension of M2 is called the codimension
of M1. For instance, a hyperplane is a linear subspace of codimension 1. Notice that then M1

is (linearly) isomorphic to the linear quotient space X/M2. Thus

V = M1 ⊕M2 ⇒ dim (M2) = codim (M1) = codim (X/M2). (2.10)

Any linear subspace A of a linear space V is algebraically complemented. (This may be proved
via transfinite induction.) []

For any operator L : V1 → V2 between linear spaces, let us set

R(L) := L(V1) (⊂ V2) (range or image of L),

N (L) := L−1(0) (⊂ V1) (kernel or nullspace of L).
(2.11)

Proposition 2.7 If V1 and V2 are linear spaces and L : V1 → V2 is a linear operator, then

codim(N (L)) = dim(V1/N (L)) = dim(R(L)). (2.12)
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Proof. It suffices to notice that V1 = N (L) ⊕ V1/N (L) (by an obvious identitification), and
the operator L induces a linear isomorphism between V1/N (L) and R(L). 2

Remark. On the other hand, in general dim(N (L)) 6= codim(R(L)). Actually, isomorphisms
preserve the dimension, but need not preserve the codimension.

2.7 * Projections in linear spaces

A linear operator P : V → V is called a projection on V iff it is idempotent, that is,
P 2 = P (or equivalently P (I − P ) = 0).

Proposition 2.8 Let V be a linear space.
If P is a projection on V , then P̃ := I − P is also a projection, and

V = R(P )⊕N (P ) = N (P̃ )⊕R(P̃ ), P P̃ = P̃P = 0. (2.13)

Conversely, if M1,M2 are two linear subspaces of V and V = M1 ⊕M2, then there exists a
unique pair of projections P and P̃ on V such that P + P̃ = I and

M1 = R(P ) = N (P̃ ), M2 = R(P̃ ) = N (P ), P P̃ = P̃P = 0. (2.14)

Proof. If P is a projection then obviously I − P is a projection, too. For any x ∈ V ,
x = P (x) + [x− P (x)] with P (x) ∈ R(P ) = N (P̃ ) and x− P (x) ∈ R(P̃ ) = N (P ). Moreover if
x ∈ R(P ) ∩N (P ) then x = P (x) = 0; (2.13) thus holds.

Let us now assume that V = M1 ⊕M2. For any x ∈ V let (x1, x2) be the unique pair of
∈ M1 ×M2 such that x = x1 + x2, and set P (x) := x1. It is straightforward to see that P is a
projection on V , M1 = R(P ) and M2 = N (P ). By setting P̃ (x) := x2 we then get (2.14).

Finally, it is clear that P is the unique projection such that M1 = R(P ) and M2 = N (P ). 2

2.8 * Projections in Banach spaces

We define continuous projections in normed spaces.

Proposition 2.9 Any projection P on a Banach space X is continuous iff both R(P ) and N (P )
are closed. 20

Proof. The “only if”-part is obvious, as R(P ) = N (I − P ).
Let us come to the “if”-part. Let un → u and Pun → w. As Pun ∈ R(P ) and this set is closed,
we infer that w ∈ R(P ), whence Pw = w. Similarly, as u− Pun ∈ N (P ) and this set is closed,
we have u − w ∈ N (P ), whence Pu = Pw. Thus Pu = w, that is, the graph of P is closed. It
then suffice to apply the Closed Graph Theorem 5.12. 2

If M1,M2 are closed subspaces of a Banach space X and X = M1 ⊕M2, then X is called a
topological direct sum; in this case one says that M1 and M2 topologically complement
(or topologically supplement) each other in X, and that they are topologically complemented.
Notice that then M1 is (topologically) isomorphic to the quotient space X/M2.

At variance with what we saw in the purely algebraic set-up,

a closed subspace of a Banach space need not be topologically complemented; (2.15)

20 This may be compared with the following statement: A linear functional f : X → R is continuous if (and
only if) f−1(0) is closed. [Ex]

17



i.e., it need not be either the range or the nullspace of any continuous projection. For instance,
c0 has no topological complement in `∞ (Phillips’s theorem), [] although, as we saw, it has
an algebraic complement. 21 However a closed subspace of a Banach space is topologically
complemented whenever either its dimension or its codimension are finite. [] Moreover, a Banach
spaceX is topologically isomorphic to a Hilbert space iff any closed subspace ofX is topologically
complemented (Lindenstrauss-Tzafriri’s Theorem). []

Remark. c0 is a closed subspace of `∞, but is not complemented. Nevertheless c0 can be
strongly separated from any u ∈ `∞ \ c0 by a closed affine hyperplane, because of the Tukey and
Klee Theorem 4.6. The same holds for C0([0, 1]) and L∞(0, 1).

3 The Hahn-Banach Theorem

In this section we state and prove the real and complex forms of the Hahn-Banach theorem,
and draw a number of consequences. This result is one of the pillars of functional analysis; for
instance, it entails that the dual X ′ of any normed space X 6= {0} is nontrivial: this is at the
basis of the feasibility of functional analysis.

3.1 Sublinear functionals
Let X be a linear space over the field K. A functional p : X → R is called sublinear iff

p(λ1v1 + λ2v2) ≤ λ1p(v1) + λ2p(v2) ∀v1, v2 ∈ X,∀λ1, λ2 ≥ 0. (3.1)

This holds iff p is subadditive and positively homogeneous of degree 1, that is,

p(v1 + v2) ≤ p(v1) + p(v2) ∀v1, v2 ∈ X,
p(λv) = λp(v) ∀v ∈ X,∀λ ≥ 0,

(3.2)

or equivalently p is convex and positively homogeneous of degree 1. [Ex]
A more restricted class consists of the functionals p : X → R+ that are subadditive and

absolutely homogeneous of degree 1, that is,

p(u+ v) ≤ p(u) + p(v) ∀v1, v2 ∈ X,
p(λv) = |λ|p(v) ∀v ∈ X,∀λ ∈ K.

(3.2’)

These coincide with what we already called seminorms. Seminorms are obviously sublinear,
but for instance any nontrivial linear functional is sublinear without being a seminorm.

3.2 Hahn-Banach theorem: real version
The Hahn-Banach theorem has several variants. A general formulation applies to any real

linear space, and does not assume the presence of any topology. Loosely speaking, it states that
any linear functional defined on a linear subspace can be extended to the whole space preserving
linearity and without increasing its size (suitably defined).

The argument rests upon transfinite induction, that here we apply in the following form:

21 Let us set C0
0 ([0, 1]) := {v ∈ C0([0, 1]) : v(0) = v(1) = 0}, C0

0 (R) := {v ∈ C0(R) : v(x) → 0 as x → ±∞},
and equip these spaces with the uniform norm. Note the analogies:

c00 is dense in c0; c0, c are closed subspaces of `∞; (2.16)

C0
c (R) is dense in C0

0 (R); C0
0 (R), C0

b (R) are closed subspaces of L∞(R); (2.17)

C0
c (]0, 1[) is dense in C0

0 ([0, 1]); C0
0 ([0, 1]), C0

b ([0, 1]) are closed subspaces of L∞(0, 1). (2.18)
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Theorem 3.1 (Zorn’s lemma) If in a partially ordered set S any (nonempty) totally ordered
subset has an upper bound, 22 then S itself has a maximal element.

• Theorem 3.2 (Hahn-Banach theorem for real vector spaces) Let X be a real linear space, p :
X → R be a sublinear functional, M be a linear subspace of X, and f : M → R be a linear
functional such that f(v) ≤ p(v) for any v ∈M . Then there exists a linear functional f̃ : X → R
such that f̃ = f in M and f̃(v) ≤ p(v) for any v ∈ X. 23

(Trivial examples show that the extension need not be unique.)

Proof. 24 The set

Φ :=
{
g : Dom(g)→ R linear : M ⊂ Dom(g) ⊂ X, g = f in M, g ≤ p

}
can be partially ordered by setting

g1 � g2 ⇔ Dom(g1) ⊂ Dom(g2), g1 = g2 in Dom(g1).

We claim that this ordering is inductive. In fact, if {gi}i∈I is a totally ordered subset of Φ,
then, setting Dom(g) :=

⋃
i Dom(gi) and g(u) = gi(u) for any u ∈ Dom(gi), we get g ∈ Φ and

gi � g for any i. By Zorn’s Lemma (3.1) then there exists a maximal element f̃ ∈ Φ.
At this point it suffices to prove that Dom(f̃) = X. By contradiction, let u0 ∈ X \ Dom(f̃),

fix an α ∈ R, and define a linear functional h by setting

Dom(h) := {v + λu0 : v ∈ Dom(f̃), λ ∈ R},

h(v + λu0) := f̃(v) + λα ∀v ∈ Dom(f̃), ∀λ ∈ R.
(3.3)

We claim that α can be chosen in such a way that h ≤ p. This will entail that f̃ � h,
contradicting the maximality of f̃ , and will thus complete the proof.

By the positive homogeneity of p, it suffices to prove that

f̃(v) + λα ≤ p(v + λu0) ∀v, w ∈ Dom(f̃), λ = ±1. (3.4)

For any v, w ∈ Dom(f̃), the linearity of f̃ , the inequality f̃ ≤ p in Dom(f̃), and the subaddi-
tivity of p yield

f̃(v) + f̃(w) = f̃(v + w) ≤ p(v + w) ≤ p(v − u0) + p(w + u0),

whence
sup

v∈Dom(f̃)

f̃(v)− p(v − u0) ≤ inf
w∈Dom(f̃)

p(w + u0)− f̃(w).

Thus there exists α ∈ R such that

f̃(v)− p(v − u0) ≤ α ≤ p(w + u0)− f̃(w).

This coincides with (3.4), as we had to prove. 2

22 Whenever this holds one says that S is inductive.
23 If we drop any reference to the sublinear functional p in the theorem (and its proof), we obtain the standard

extension theorem of linear functionals in linear spaces.
24 This proof is nonconstructive. No constructive argument is actually known.
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3.3 Hahn-Banach theorem: complex version
Next we provide a different formulation of the Hahn-Banach theorem, that also applies to

complex linear spaces, but assumes that the sublinear functional is a seminorm. (Notice that
for K = C the homogeneity property (1.12)2 is stronger than the positive homogeneity.)

First, for any complex linear space VC, let us denote by VR the associated real linear space.
Notice that Im(z) = Re(−iz) = −Re(iz) for any complex number z.

Lemma 3.3 The real part g of any linear functional f on a linear space VC over C is a linear
functional on the associated linear space VR over R. Viceversa, any linear functional g on VR is
the real part of the linear functional f(v) = g(v) − ig(iv) on VC. Moreover, if VC is a normed
space, then f is continuous iff so is g, and ‖f‖ = ‖g‖ in that case.

Proof. We just prove the final assertion, as the remainder is easily checked. For any v ∈
X, |g(v))| ≤ |f(v)|. On the other hand, if f(v) = reiθ (with r, θ ≥ 0), then g(e−iθv) =
Re(f(e−iθv)) = Re(e−iθf(v)) = r = |f(v)|. Hence ‖f‖ = ‖g‖. 2

Theorem 3.4 (Hahn-Banach theorem for seminormed spaces) 25 Let X be a linear space over
K equipped with a seminorm p, M be a linear subspace of X, and f : M → K be a linear
functional such that |f(v)| ≤ p(v) for any v ∈M . Then there exists a linear functional f̃ : X →
K such that f̃ = f in M and |f̃(v)| ≤ p(v) for any v ∈ X.

Proof. If K = R the statement directly follows from Theorem 3.2; let us then assume that
K = C. Let us extend Re(f) to a linear functional g : X → R with g ≤ p, as we did in
Theorem 3.2. By the previous lemma the functional f̃ : X → C : v 7→ g(v)− ig(iv) is then linear
and extends f .

For any fixed v ∈ X, we have f̃(v) = reiθ for some r, θ ≥ 0. Hence f̃(e−iθv) = e−iθf̃(v) = r ≥
0, and therefore |f̃(e−iθv)| = f̃(e−iθv) = g(e−iθv). As g ≤ p in X, by the positive homogeneity
of p we then have

|f̃(v)| = |e−iθf̃(v)| = |f̃(e−iθv)| = g(e−iθv)

≤ p(e−iθv) = |e−iθ|p(v) = p(v) ∀v ∈ X.2
(3.5)

3.4 Some consequences of the Hahn-Banach theorem.

Corollary 3.5 Let M be a linear subspace of a normed space X. Any functional f ∈ M ′ can
then be extended to a functional f̃ ∈ X ′ such that ‖f̃‖X′ = ‖f‖M ′.

(The extension f 7→ f̃ is said to be norm-preserving.)

Proof. As |f(v)| ≤ ‖f‖M ′‖v‖X for any v ∈ M , we can apply Theorem 3.4 with p(v) =
‖f‖M ′‖v‖X . There exists thus an extension f̃ ∈ X ′ such that |f̃(v)| ≤ ‖f‖M ′‖v‖X for all v ∈ X.
Hence ‖f̃‖X′ ≤ ‖f‖M ′ ; as f̃ extends f , this is an equality. 2

Remark. The Hahn-Banach theorem concerns the extension of linear and continuous func-
tionals. No analogous extension exists in general for linear and continuous operators between
Banach spaces. For instance, the identity operator c → c cannot be extended to a linear and
continuous operator `∞ → c.

25 Due to Bohnenblust-Sobczyk-Soukhomlinoff.
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Corollary 3.6 Let X 6= {0} be a real normed space. For any u ∈ X, then there exists f ∈ X ′
such that ‖f‖ = 1 and f(u) = ‖u‖.

Thus
‖u‖ = max {f(u) : f ∈ X ′, ‖f‖ ≤ 1} ∀u ∈ X. (3.6)

Proof. For u = 0 the thesis is trivial. For any fixed u ∈ X \ {0}, let us define the linear
subspace M = Ku and set g(λu) = λ‖u‖ for any λ ∈ K. As g ∈ M ′ and ‖g‖M ′ = 1, by
Corollary 3.5 there exists a norm-preserving extension f ∈ X ′. 2

By the foregoing corollary, functional analysis in normed spaces has plenty of linear and
continuous functionals at its disposal. Because of the next result, the dual of a normed space
separates points.

Corollary 3.7 Let X be a normed space, M be a closed subspace of X, and u ∈ X \M . Then
there exists f ∈ X ′ such that f(u) = 1 and f(v) = 0 for any v ∈M .

Proof. As M is a closed subspace, we may define the quotient space X/M . For any u ∈ X \M ,
by Corollary 3.6 there exists g ∈ (X/M)′ such that g([u]) = ‖[u]‖ 6= 0. Then f : X → K : v 7→
g([v])/g([u]) has the required properties. 2

Corollary 3.8 A linear subspace M of a normed space X is dense in X if (and only if) f = 0
is the only element of X ′ such that f(v) = 0 for any v ∈M .

Proof. By Corollary 3.7, if M 6= X then for any u ∈ X \M there exists a functional f ∈ X ′
such that f 6= 0 and f(v) = 0 for any v ∈ M . (The converse implication is obvious and is not
related to the Hahn-Banach theorem.) 2

Corollary 3.9 Let M be a linear subspace of the dual X ′ of a normed space X. If M is dense
in X ′, then u = 0 is the only element of X such that f(u) = 0 for any f ∈M .

Proof. Let u ∈ X be such that f(u) = 0 for any f ∈M . By the density of M , then f(u) = 0
for any f ∈ X ′. By Corollary 3.6 then ‖u‖ = 0, i.e., u = 0. 2

Proposition 3.10 The canonical embedding J : X → X ′′ (see (1.21)) is an isometric isomor-
phism between X and J(X). Moreover, J(X) is a closed subspace of X ′′ iff X is a Banach
space.

Proof. The first statement holds since

‖Ju‖ = sup
‖f‖≤1

|Ju(f)| (3.6)
= max
‖f‖≤1

|f(u)| = ‖u‖ ∀u ∈ X. (3.7)

Therefore J(X) is complete iff so is X, and the final assertion follows. 2

A Banach space X̂ is called a completion of a normed space X, if there exists an isometry
Φ : X → X̂ such that Φ(X) is dense in X̂. The bidual can be used to construct this completion.

Proposition 3.11 Any normed space X has a completion X̂. Any two completions of X are
isometrically isomorphic.

Proof. Let J : X → X ′′ be the canonical embedding. Then the closure of J(X) in X ′′ is
a completion of X, because of Proposition 3.10. Now let X̂ and X̃ be two completions of X
with corresponding isometries Φ : X → X̂ and Φ̃ : X → X̃. By Proposition 1.6, the mapping
L0 = Φ̃◦Φ−1 : Φ(X)→ Φ̃(X) has an extension L : X̂ → X̃, and this is an isometric isomorphism,
too. 2
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4 Separation

4.1 Separation in linear spaces
Let us distinguish between linear separation and (linear and) topological separation. The

former is a purely algebraic concept, and concerns convex subsets of a linear space X; the latter
applies to normed spaces.

We say that H ⊂ X is a hyperplane iff H = f−1(0), for some linear functional f : X → R
with f 6= 0; obviously H determines f up to a factor λ 6= 0. We define an affine hyperplane
as the translate of a hyperplane: H = f−1(0) + v for any f 6= 0 and v ∈ X; or equivalently,
setting α = f(v), H = f−1(α) for any α ∈ K. A hyperplane is a proper linear subspace that is
maximal, in the sense that X is the only linear subspace that strictly contains it. Hyperplanes
are linear subspaces of codimension one.

Let A,B be two nonempty subsets of a real linear space X. We say that a nonzero linear
functional f : X → R separates A and B iff f(u) ≤ f(v) for any u ∈ A and any v ∈ B, that is,

sup
u∈A

f(u) ≤ inf
v∈B

f(v). (4.1)

Any α ∈ [supA f, infB f ] then determines an affine hyperplane H = f−1(α) such that A and
B are respectively contained in the half-spaces f−1(]−∞, α]) and f−1([α,+∞[). Notice that A
and/or B might intersect H, or even be contained in it (even A = B is not excluded!).

We say that f strongly separates 26 A and B iff

sup
u∈A

f(u) < inf
v∈B

f(v). (4.2)

If X is a normed space, one is mainly interested in the case where the separating functional f
is continuous, i.e., f ∈ X ′. Then the affine hyperplane H = f−1(α) is closed. Moreover, f ∈ X ′
separates two nonempty subsets A and B of X iff it separates their closures; the same holds for
the strong separation. [Ex]

Gauges. For any subset M of a linear space X over K, the functional

pM : X → [0,+∞] : u 7→ inf{λ > 0 : u ∈ λM} (4.3)

is called the Minkowski functional (or the gauge) of M . For instance, if M = B(0, R) then
pM = ‖ · ‖/R. Note that p∅ = inf ∅ = +∞, pX = 0, and

M1 ⊂M2 =⇒ pM1 ≥ pM2 ∀M1,M2 ⊂ X. (4.4)

The set M is called absorbing iff pM (u) < +∞ for any u ∈ X (or equivalently, X =⋃
λ>0 λM), and balanced iff λM ⊂M whenever λ ∈ K and |λ| = 1.

Lemma 4.1 Let X be a linear space. If p is a seminorm, then the p-unit ball Mp := {u ∈
X : p(u) ≤ 1} is absorbing, balanced and convex. Conversely, the gauge pM of any absorbing,
balanced and convex set M ⊂ X is a seminorm. Moreover pMp = p and {u : pM (u) < 1} ⊂M ⊂
{u : pM (u) ≤ 1}. [Ex]

Lemma 4.2 An absorbing, balanced and convex subset M of a normed space X is a neighbour-
hood of the origin iff its gauge pM is continuous on X. Moreover int(M) = {u : pM (u) < 1} in
this case.

26 Here strongly does not refer to the strong topology!
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Proof. If the seminorm pM is continuous on X, then {u : pM (u) < 1} is an open subset of
M , and thus 0 ∈ {u : pM (u) < 1} ⊂ int(M). In order to prove the converse, let us assume that
0 ∈ int(M). By Lemma 4.1, then

0 ∈ int(εM) ⊂ {u : pM (u) ≤ ε} ∀ε > 0 . (4.5)

As {εM : ε > 0} is a basis of neighbourhoods of the origin, this implies that pM (un) → 0
whenever un → 0. Thus pM is continuous at the origin, hence on the whole X because of the
inverse triangle inequality.

It remains to show that int(M) ⊂ {u : pM (u) < 1}. Indeed, if u ∈ X with pM (u) = 1, then for
any λ > 1 we have pM (λu) = λpM (u) > 1 and thus λu /∈M by Lemma 4.1. Thus, u /∈ int(M).
2

4.2 Separation in normed spaces
Let us first deal with real normed spaces, and begin with separation of a point from a convex

set.

Theorem 4.3 Let X be a real normed space, A be a convex subset with nonempty interior, and
u ∈ X \ int(A). Then

∃f ∈ X ′ : f(v) ≤ f(u) ∀v ∈ A, f(v) < f(u) ∀v ∈ int(A). (4.6)

In particular f thus separates A and {u}.

* Proof. We can assume that 0 ∈ int(A) without loss of generality. Let us define g : Ru→ R
by g(tu) = t, so that |g| ≤ pA on Ru by Lemma 4.1. Because of Theorem 3.4, g can be extended
to a linear functional f : X → R with |f(v)| ≤ pA(v) for any v ∈ X. By Lemma 4.2, pA is
bounded; hence f is bounded, thus f ∈ X ′. By Lemma 4.1 and Lemma 4.2, pA(v) < 1 for any
v ∈ int(A) and pA(v) ≤ 1 for any v ∈ A. As f(u) = 1, the assertion follows. 2

A counterexample. In the foregoing theorem the hypothesis that A has nonempty interior
cannot be dropped. A counterexample is provided by any proper dense linear subspace Y of a
real Banach space X; e.g., Y = `1 and X = c0. As Y is dense in X, for any nonzero f ∈ X ′
there exists v ∈ X such that f(v) 6= 0; by the linearity of f , then f(Y ) = R. No point of X \ Y
can thus be separated from Y .

Lemma 4.4 Let A and B be two nonempty subsets of a normed space X. Then:
(i) if A and B are convex, then A+B is convex;
(ii) if A is open, then A+B is open;
(iii) if A is compact and B is closed, then A+B is closed.

(The same properties obviously hold for A−B = A+ (−B), too.)

Proof. Parts (i) and (ii) are straightforward. Let us prove part (iii). For any point w ∈ A+B,
there exist sequences {un} ⊂ A and {vn} ⊂ B such that un + vn → w. As A is compact, there
exists a convergent subsequence {un′} whose limit u belongs to A. Hence vn′ → v := w−u, and
v ∈ B since B is closed. Thus w = u+ v ∈ A+B. 2

The set A + B need not be closed if A and B are just closed. For instance, let A± =
{(x,±1/x) ∈ R : x > 0} and set C = A+ + A−; then (0, 0) ∈ C̄ \ C. Indeed, e.g., C 3
(1/n, n) + (1/n,−n) = (2/n, 0)→ (0, 0).
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• Theorem 4.5 (Separation – Eidelheit) Let A and B be two disjoint nonempty convex subsets
of a real normed space X, with A open. Then A and B can be separated by a closed affine
hyperplane.

Proof. By Lemma 4.4 the set A−B is convex and open. As A and B are disjoint, 0 /∈ A−B.
By Theorem 4.3, the closed subspace {0} can then be separated from A − B; that is, there
exists f ∈ X ′ such that f(A − B) ≤ f(0) = 0. As f(A) − f(B) = f(A − B), we conclude that
f(A) ≤ f(B). (One can also show that f(A) < f(B).) 2

• Theorem 4.6 (Strong Separation – Tukey and Klee) Let X be a real normed space, and A
and C be two disjoint nonempty convex subsets of X, with A compact and C closed. Then A
and C can be strongly separated by a closed affine hyperplane.

Proof. As A is compact, ε = dist(A,C) := inf
{
‖u − v‖ : u ∈ A, v ∈ C

}
> 0. [Ex] Thus,

denoting by Bε the open ball with radius ε centered in 0, the sets C and Aε = A + Bε are
disjoint. By Lemma 4.4, Aε is open and convex. By Theorem 4.5, then there exists f ∈ X ′ such
that sup f(Aε) ≤ inf f(C). By selecting u ∈ A with f(u) = max f(A) and v ∈ Bε with f(v) > 0,
we have

max f(A) < f(u) + f(v) = f(u+ v) ≤ sup f(Aε) ≤ inf f(C).2

An example. By Theorem 4.6, any ū ∈ c \ c0 can be strongly separated from c0 by a closed
affine hyperplane. In this case the hyperplane is actually a closed subspace of the form: f−1(0),
for a suitable f ∈ c′.

If K = R, then we can select f(v) = limj→∞ vj for any v = (v1, ..., vj , ...) ∈ c; indeed f(ū) 6= 0
and f(v) = 0 for any v ∈ c0.

If K = C, then we select the same functional if Re
(

limj→∞ vj
)
6= 0. Otherwise we select

f(u) = i limj→∞ vj , so that Re(f(ū)) 6= 0, as ū 6∈ c0.

Corollary 4.7 Any closed convex subset A of a real normed space X is the intersection of the
closed half-spaces that contain it.

Proof. It suffices to notice that any point of the complementary set of A can be strongly
separated from A, since singletons are convex and compact. 2

Remarks. (i) In Theorem 4.6 the hypothesis of compactness cannot be replaced by closedness.
For instance, in R2 the set {(x, y) : x > 0, xy ≥ 1} and the x-axis cannot be strongly separated.

(ii) Theorems 4.5 and 4.6 are based on somehow diverging hypotheses. The first one states
that two disjoint nonempty convex subsets of X can be separated, provided that one of the two
sets is open. The second result instead states that two disjoint nonempty convex subsets can be
strongly separated, provided that one of them is compact and the other one is closed.

Separation in complex normed spaces. Let X be a complex linear space, and XR be the
corresponding real linear space. Any norm on X is also a norm on XR. By Lemma 3.3, f ∈ X ′ iff
Re(f) ∈ X ′R, and in that case ‖f‖ = ‖Re(f)‖. This allows us to extend the notion of separation
to any complex linear space X:

a nonzero linear functional f : X → C separates two

nonempty subsets of X iff Re(f) separates them in XR.
(4.7)

We similarly extend strong separation. The previous separation results are then readily ex-
tended to complex normed spaces. We leave this reformulation to the reader.
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5 The Baire Theorem and its Consequences

5.1 The Baire theorem
The results of this section stem from the following classical result, which concerns the topology

of complete metric spaces.

• Theorem 5.1 (Baire Theorem) Let X be a complete metric space. If X is a countable union
of closed subsets, then at least one of them has nonempty interior. [Dually and equivalently: the
intersection of any countable family of open dense subsets of X is dense.]

Proof. Let {Xn} be any sequence of (possibly nondisjoint) closed subsets of X with empty
interior. It suffices to show that X 6=

⋃
n∈NXn.

As X0 is closed and has no interior point, it cannot coincide with X. Thus X \ X0 is open
and contains a closed ball, say B(x0, ε0). As X1 is closed and has no interior point, the set
(X \X1)∩int(B(x0, ε0)) is open and contains a closed ball B(x1, ε1) with ε1 ≤ ε0/2. By iterating
this procedure, we construct a nested sequence {B(xn, εn)} of closed balls; each of them does
not intersect Xn, and εn → 0. By the completeness of X, the sequence {xn} then converges to
some x ∈ X. By construction B(xm, εm) ∩

(⋃
n≤mXn

)
= ∅ for any m. As x ∈

⋂
n∈NB(xn, εn),

we infer that x 6∈
⋃
n∈NXn; thus X 6=

⋃
n∈NXn. 2

This theorem has several consequences, including the next result.

Corollary 5.2 No Banach space has countable infinite dimension.

Proof. By contradiction, let {un} be a countable Hamel basis, and let Xm be the linear span
of {u1, ..., um} for any m ∈ N. These finite-dimensional subspaces are closed and have empty
interior. As the whole space is the union of these sets, by the Baire theorem it cannot be
complete. 2

5.2 The principle of uniform boundedness
This result provides the uniform boundedness of pointwise bounded families F of bounded

operators.

• Theorem 5.3 (Banach-Steinhaus) Let X1 be a Banach space, X2 a normed space, and F ⊂
L(X1;X2). Then

sup
L∈F
‖Lu‖2 < +∞ ∀u ∈ X1 ⇒ sup

L∈F
‖L‖L(X1;X2) < +∞. (5.1)

In other terms, denoting by BX1 the open unit ball in X1,

∀u ∈ BX1 ,∃C > 0 : ∀L ∈ F , ‖Lu‖2 ≤ C
⇒ ∃Ĉ > 0 : ∀u ∈ BX1 , ∀L ∈ F , ‖Lu‖2 ≤ Ĉ.

(5.2)

Proof. Let us set

An = {u ∈ X1 : ∀L ∈ F , ‖Lu‖2 ≤ n} =
⋂
L∈F{u ∈ X1 : ‖Lu‖2 ≤ n}

for any n. Because of the continuity of the operators of F , this set is closed. By the assumption
of pointwise boundedness, each u ∈ X1 belongs to some An; thus,

⋃
nAn = X1. By the Baire

25



theorem, for some ñ ∈ N the interior of Añ is then nonempty. So let w ∈ Añ and r > 0 be such
that w + rB(0, 1) ⊂ Añ. Therefore, for any L ∈ F and any v ∈ B(0, 1)

r‖L(v)‖2 = ‖L(w + rv)− L(w)‖2 ≤ ‖L(w + rv)‖2 + ‖L(w)‖2 ≤ 2ñ, (5.3)

whence supL∈F ‖L‖L(X1;X2) ≤ 2ñ/r. 2

Remark. The Banach-Steinhaus theorem fails if X1 is not complete. A counterexample is
provided by the family of functionals {fn}n∈N, with fn(x) = nxn for any x := (x1, x2, ...) ∈ c00

and any n.

The Banach-Steinhaus theorem concerns linear and continuous operators, in particular func-
tionals.

Corollary 5.4 Let X be a Banach space. Any set C ⊂ X ′ is bounded if (and only if) for any
x ∈ X, {f(x) : f ∈ C} is a bounded subset of K.

Let X be a normed space. Any set B ⊂ X is bounded if (and only if) for any f ∈ X ′,
{f(x) : x ∈ B} is a bounded subset of K.

Another consequence is that the pointwise limit of a sequence of bounded operators is again
a bounded operator.

Corollary 5.5 Let X1 be a Banach space, X2 be a normed space, and {Ln} be a sequence in
L(X1;X2). Assume that for any u ∈ X1 the sequence {Lnu} converges in X2, and denote this
limit by Lu. This defines an operator L ∈ L(X1;X2) satisfying

‖L‖ ≤ lim inf
n→∞

‖Ln‖. (5.4)

Proof. The linearity of L is straightforward. Moreover, since {Lnu} is bounded for any u ∈ X1,
by the Banach-Steinhaus theorem C = supn ‖Ln‖ <∞. For any u ∈ X1, then

‖Lu‖ =
∥∥ lim
n→∞

Lnu
∥∥ = lim

n→∞
‖Lnu‖ ≤ lim sup

n→∞
‖Ln‖‖u‖ ≤ C‖u‖. (5.5)

This proves the continuity of L as well as the inequality (5.4). 2

5.3 The open mapping theorem
A linear mapping between two normed spaces is called open iff it maps open sets to open

sets.

Lemma 5.6 Let X1 and X2 be normed spaces. A mapping L ∈ L(X1;X2) is open if (and only

if) 0 is an interior point of L(
◦
BX1). 27

Proof. Let U be open in X1, v ∈ L(U), and u ∈ U ∩ L−1(v). For any ε > 0 such that

u+ ε
◦
BX1 ⊂ U , we have v + εL(

◦
BX1) = L(u+ ε

◦
BX1) ⊂ L(U). We conclude that L(U) is open.

2

As any neighborhood of the origin is absorbing, this lemma entails that any open mapping
is surjective. The open mapping theorem establishes the converse, whenever X1 and X2 are
complete.

27
◦
BX1 is the open unit ball in X1.
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• Theorem 5.7 (Banach’s Open Mapping Theorem) Let X1 and X2 be Banach spaces. Any
surjective mapping L ∈ L(X1;X2) is open.

Proof. Set Vm = L(mBX1). We have X2 =
⋃
m≥1 Vm as L is surjective. By Baire’s theorem,

some Vk has nonempty interior, so it contains an open ball v + Bδ = v + δBX1 . We infer that
−v + Bδ ⊂ Vk by symmetry, and Bδ ⊂ Vk by convexity; consequently Bε ⊂ V1 for ε = δ/k.
Because of Lemma 5.6, it now suffices to prove that V1 ⊂ V2, since 0 will then also be an
interior point of V1 = L(BX1). To this purpose, let v ∈ V1. Set v0 = v and choose u1 ∈ BX1

with v1 := v0 − Lu1 ∈ Bε/2 ⊂ L(B1/2). Proceeding inductively, choose un ∈ B21−n with

vn := vn−1 − Lun ∈ B2−nε ⊂ L(B2−n). Therefore
∑∞

n=0 ‖ui‖ < +∞; hence
∑∞

n=0 ui converges
in X2. We thus get

u :=
∑∞

n=1 un ∈ B2, v −
∑n

j=1 Luj = vn → 0;

thus v = Lu ∈ L(B2) = V2. 2

Remark. One might wonder whether all surjective mappings L ∈ L(X1;X2) map closed sets to
closed sets. This fails even in R2. For instance the linear, continuous and surjective functional
L : R2 → R : (x, y) 7→ x maps the closed set A := {(x, y) : xy ≥ 1} to the nonclosed set
L(A) = R\{0}. On the other hand, as it is well known, continuous mappings map compact sets
to compact sets, even without any linearity assumption. (These maps however are not called
compact.)

Some consequences of the Open Mapping Theorem.

Corollary 5.8 (Inverse Mapping Theorem) Let X1 and X2 be Banach spaces. The inverse of
any linear, continuous and bijective mapping from X1 to X2 is linear and continuous.

A linear mapping L : X1 → X2 between normed spaces X1 and X2 is called bounded below
iff there exists c > 0 such that

c‖u‖ ≤ ‖Lu‖ ∀u ∈ X1. (5.6)

(The continuity of L is tantamount to the opposite inequality, that is, to what one might name
boundedness above.)

Theorem 5.9 (Closed Range Theorem) Let X1 and X2 be Banach spaces. For any L ∈ L(X1;X2)
the following statements are equivalent:

(i) L is bounded below,
(ii) L is injective and R(L) is closed,
(iii) L : X1 → R(L) is a Banach isomorphism.

Proof. First we prove that “(i)⇒(ii)”. Let us assume that L is bounded below, so that Lu = 0
implies u = 0. If {Lun} is a Cauchy sequence in R(L), then by (5.6) {un} is a Cauchy sequence
in X1. Hence un → u for some u ∈ X1, and Lun → Lu by continuity. Thus R(L) is complete,
hence closed.

Next we prove that “(ii)⇒(iii)”. By the linearity of L, R(L) is a linear space; if it is also closed
in X2, then it is a Banach space. By applying the inverse mapping theorem (Corollary 5.8) with
R(L) in place of X2, we thus get (iii).

The implication “(iii)⇒(i)” is obvious. 2
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Corollary 5.10 Let X1 and X2 be Banach spaces. For any L ∈ L(X1;X2) the following state-
ments are equivalent:

(i) L is bounded below and R(L) is dense,
(ii) L is an isomorphism.

Let us recall that, whenever ‖ · ‖1 and ‖ · ‖2 are two norms over the same linear space X, we
say that the former norm is weaker than the latter one (and that this is stronger than the other
one) iff there exists a constant C > 0 such that ‖u‖1 ≤ C‖u‖2 for all u ∈ X. The topology
induced by ‖ · ‖2 is then finer than that induced by ‖ · ‖1.

Corollary 5.11 Let a linear space X be a Banach space when equipped with either of two norms
‖ · ‖1 and ‖ · ‖2. If one of these norms is stronger than the other one, then they are equivalent.

Proof. Denoting X1 and X2 the two normed spaces, it suffices to apply Corollary 5.8 to the
identity mapping. 2

Remark. The foregoing assertion fails in noncomplete normed spaces. For instance, the linear
space c00 equipped with any of the norms of `p (1 ≤ p ≤ ∞) is a noncomplete normed space.
The norm of `p is finer than that of `q whenever p < q, but these norms are not equivalent.

• Theorem 5.12 (Closed Graph Theorem) Let X1 and X2 be Banach spaces. A linear mapping
L : X1 → X2 is continuous iff its graph GL := {(v, Lv) : v ∈ X1} is closed in X1 ×X2.

Proof. The proof of the “only if”-part is straightforward. Let us then prove the “if”-part. If
the linear subspace GL of X1×X2 is closed, then it is a Banach space by itself. The projections

pi : GL → Xi, p1(v, Lv) = v, p2(v, Lv) = Lv

are continuous. As p1 is bijective, p−1
1 also is continuous by the inverse mapping theorem

(Corollary 5.8). Therefore L = p2 ◦ p−1
1 is continuous. 2

Remarks. (i) Let L : X1 → X2 be a linear mapping between two Banach spaces X1 and X2,
and let us consider the following statements:

(a) un → u in X1, (b) Lun → w in X2, (c) w = Lu.

The mapping L is closed iff “(a) and (b) together imply (c)”, whereas it is continuous off “(a)
implies (b) and (c)” (for any sequence {un} and any u in X1). The fact that the former property
entails the latter is a remarkable consequence of the open mapping theorem.

(ii) Let X1 and X2 be Banach spaces, and L : X1 → X2 be a linear mapping. The graph
of L may be closed (that is, L may be continuous by the latter theorem) even if its range is
not closed. Whenever X1 ⊂ X2 with proper and continuous injection, the identity mapping
X1 → X2 is a counterexample. See however Theorem 5.9.

6 Weak Topologies

In this section we introduce the weak and the weak star topology.
In any normed space X the topology generated by the norm is called the norm topology or

the strong topology. The so-called weak topology is defined as follows:

the weak topology on X is the coarsest topology on X

among those that make all functionals in X ′ continuous.
(6.1)
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Any weakly closed (weakly open, resp.) set is closed (open, resp.). 28 Let us denote by B(0, ε)
the ball of K with center 0 and radius ε > 0. The family

S = {f−1(B(0, ε)) : f ∈ X ′, ε > 0} (6.2)

is a subbasis of the system of the neigborhoods of the origin in the weak topology. Any weakly
open subset of X is thus the union of a family of elements, and each of these elements is the
intersection of a finite subfamily of

⋃
u∈X(u+ S).

The same construction applies to the dual space X ′:

the weak topology on X ′ is the coarsest topology on X ′

among those that make all functionals in X ′′ continuous.
(6.3)

In X ′ the weak star topology is also defined. 29 This topology on X ′ is generated by the
family {(K, Ju) : u ∈ X}, where by J we denote the canonical imbedding X → X ′′. Thus

the weak star topology on X ′ is the coarsest topology on X ′

among those that make all functionals of J(X) continuous.
(6.4)

The family
S = {(Ju)−1(B(0, ε)) : u ∈ X, ε > 0} (6.5)

is a subbasis of the system of neigborhoods of the origin in this topology.
If X is reflexive, then on X ′ the weak star topology coincides with the weak topology. Oth-

erwise the former is strictly coarser than the latter, since any element of X ′′ \ X is weakly
continuous on X ′ but not weakly star continuous.

6.1 Weak and weak star convergence
The weak and weak star topologies induce the following notions of convergence for sequences.30

Proposition 6.1 Let X be a normed space. For any sequence {un} and u in X, and for any
sequence {fn} and f in X ′, the following holds

un → u weakly in X ⇔ f(un)→ f(u) ∀f ∈ X ′, (6.6)

fn → f weakly in X ′ ⇔ F (fn)→ F (f) ∀F ∈ X ′′, (6.7)

fn → f weakly star in X ′ ⇔ fn(u)→ f(u) ∀u ∈ X. (6.8)

One says that two disjoint open subsets of a topological space T separate two distinct points
u, v ∈ T iff they respectively include u and v. The space T is called a Hausdorff space, and its
topology is said to be Hausdorff, iff any pair of distinct points of T can be separated. It is easy
to see that this holds iff the limit of any convergent sequence in T is unique. The next result
thus entails the uniqueness of both weak and weak star limits.

Proposition 6.2 The weak topology of a normed space X and the weak star topology of X ′ are
Hausdorff. The weak and weak star limits are then unique.

28 The norm topology is our default topology unless otherwise specified. So “open” stands for “strongly open”,
“closed” for “strongly closed”, and so on.

29 This is meaningful only in a dual space. The star refers to the fact that in the literature the dual space is
often denoted by X∗, with a star instead of a prime.

30 Definitions are quite similar for nets.
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Proof. Let us first consider the weak topology. If u, v ∈ X with u 6= v, then f(u) 6= f(v) for
some f ∈ X ′ by Theorem 4.6. For any open subsets I and J of K that separate f(u) and f(v),
thus f−1(I) and f−1(J) separate u and v.

Let us next come to the weak star topology. Without using any consequence of the Hahn-
Banach theorem, by definition of function, if f, g ∈ X ′ with f 6= g, then f(u) 6= g(u) for some
u ∈ X. The argument then proceeds as above. 2

Proposition 6.3 (i) Let X be a Banach space. Then any weakly convergent sequence {un} in
X is bounded. Moreover, denoting its weak limit by u,

‖u‖ ≤ lim inf
n→∞

‖un‖. (6.9)

(ii) Let X be a normed space. Then any weakly convergent sequence {fn} in X ′ is bounded.
Moreover, denoting its weak limit by f ,

‖f‖ ≤ lim inf
n→∞

‖fn‖. (6.10)

(iii) Let X be a Banach space. Then any weakly star convergent sequence {fn} in the dual
space X ′ is bounded. Moreover, its weak star limit f fulfills (6.10).

Proof. Let us first prove part (iii). Let fn → f weakly star in X ′. By Proposition 6.1, {fn(u)}
is convergent and hence bounded for any u ∈ X. By of the principle of uniform boundedness
(Theorem 5.3), the sequence {‖fn‖} is then bounded. Inequality (6.10) follows from the estimate

|f(u)| = lim
n→∞

|fn(u)| ≤ lim inf
n→∞

‖fn‖‖u‖ ∀u ∈ X. (6.11)

In order to prove (i), let us consider the canonical imbedding J : X → X ′′ and note that
un → u weakly in X iff Jun → Ju weakly star in X ′′. As J is an isometry, part (i) follows from
part (iii).

Part (ii) is just a reformulation of part (i) in X ′. 2

Remark. Part (iii) of the preceding theorem fails if X is not complete. Here is a counterexample
for X = c00. For any n ∈ N, let us define fn ∈ c00

′ by setting fn(u) := nun for any u =
(u1, u2, ...) ∈ c00. The sequence {fn} weakly star vanishes in c00

′ as n→∞, but is unbounded.
However, this sequence {fn} does not weakly star vanish in c0

′, although c0 is the completion
of c00.

Next we show that, whenever existing, the pointwise weak limit of a sequence of bounded op-
erators defines a bounded operator. In particular, this applies to a pointwise weakly convergent
sequence in X ′.

Proposition 6.4 Let X1 be a normed space, X2 be a Banach space, and {Ln} be a sequence in
L(X1;X2). If the sequence {Lnu} weakly converges in X2 for any u ∈ X1, then, denoting by Lu
this limit, a mapping L : X1 → X2 is defined such that

L ∈ L(X1;X2) , ‖L‖ ≤ lim inf
n→∞

‖Ln‖. (6.12)
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Proof. The linearity of L is straightforward, and we just show the continuity. By Proposi-
tion 6.3(i), the sequence {Lnu} is bounded in the Banach space X2 for any v ∈ X1. By the
principle of uniform boundedness (Theorem 5.3), then supn ‖Ln‖ <∞. By (6.9), then

‖Lu‖ ≤ lim inf
n→∞

‖Lnu‖ ≤ lim inf
n→∞

‖Ln‖‖u‖ ∀v ∈ X1.

(6.12) is thus established. 2

6.2 * Two results concerning weak convergence

* Weak closedness and weak sequential closedness. In Proposition 7.4 we shall see that
the weak topology is not metrizable (i.e., it is not induced by a metric), whenever X has infinite
dimension. The closure of a subset S of X may thus include elements that cannot be represented
as weak limit of any sequence in S. Therefore weak continuity and sequential weak continuity
need not coincide.

For any n ∈ N let us denote by en the sequence (0, ..., 0, 1, 0, ...), with 1 at the nth place and
0 elsewhere, and define the set

A := {
√
nen : n ∈ N} ⊂ X = `2.

By Proposition 6.3, no sequence of distinct elements of A weakly vanishes in X, since any such
sequence is unbounded. On the other hand, we claim that the null element lies in the weak
closure of A or, equivalently, that any weak neighborhood of 0 intersects A. In order to prove
this, according to (6.2) it suffices to show that A intersects any set of the form

U =

m⋂
k=1

{u ∈ X : |fk(u)| < ε},

where ε > 0, m ∈ N and f1, . . . , fm ∈ X∗. Let such a set U be given, let

fk(u) =

∞∑
j=1

f jkuj ,

∞∑
j=1

|f jk |
2 <∞, 1 ≤ k ≤ m.

(By {uj} and {f jk} we denote the components of u and fk, for any k.) Let us define gj :=∑m
k=1 |f

j
k | for j ∈ N. Hence g = {gj} ∈ `2, and thus there exists an n ∈ N such that

√
ngn < ε

(otherwise
∑∞

j=1 |gj |2 ≥ ε2
∑∞

j=1(1/j) =∞). For this n we have

|fk(
√
nen)| =

√
n|fnk | ≤

√
ngn < ε, 1 ≤ k ≤ m.

Thus,
√
nen ∈ U and the claim is proved.

Another example is due to von Neumann. For any n ∈ N let us denote by en the sequence
(0, ..., 0, 1, 0, ...) (with 1 at the nth place and 0 elsewhere), and define the unbounded set

A := {em +men : m,n ∈ N, 1 ≤ m < n}.

No sequence of distinct elements of A weakly vanishes in `2. [Ex] Nevertheless one can show
that the null element is in the weak closure of A, or equivalently that any weak neighborhood
of 0 intersects A. []

* The Schur property. Next we outline a surprising phenomenon. We saw that in any
infinite-dimensional normed space the weak topology is strictly weaker than the strong one.
Nevertheless the following occurs.
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Theorem 6.5 (Schur) In `1 any weakly convergent sequence is strongly convergent.

Proof. Let {un} ⊂ `1 be such that un → 0 weakly in `1. Hence for any m, denoting by umn the
mth component of un, umn → 0 as n→∞. It is then clear that un → 0 in measure in any finite
subset of N, that is, in any subset of finite measure, if we equip N with the counting measure.
By the next (nontrivial) lemma of measure theory, it then follows that un → 0 in `1. 2

Lemma 6.6 Let (A,A, µ) be a measure space, {un} be a sequence in L1(A), and un → u weakly
in L1(A). Then un → u strongly in L1(A) iff un → u in measure in every set Ã ⊂ A of finite
measure. []

Any Banach space that has the property of part (i) is said to have the Schur property. So `1

has it, but L1(0, 1) does not. (In passing notice that L1(0, 1) is not topologically isomorphic to
`1: e.g., `1 has a predual, whereas L1(0, 1) has not.)

Ahead we shall see that in infinite-dimensional Banach spaces, the weak topology is not de-
termined by the weakly convergent sequences. Therefore the Schur property does not entail
that the weak and strong topology coincide. This fact actually only holds in finite-dimensional
normed space, as we shall see ahead.

6.3 Two convexity results of Mazur
If X is a linear space, then a function f : X → R∪{+∞} is said to be quasiconvex iff for any

a ∈ R the sublevel set {v ∈ X : f(v) ≤ a} is convex. On the other hand, f : X → R ∪ {+∞} is
said to be convex iff the epigraph {(v, a) ∈ X×R : f(v) ≤ a} is convex. Any convex function is
quasiconvex, but not conversely; e.g., the real function x 7→

√
|x| is quasiconvex but not convex.

If X is a topological space, then a function f : X → R ∪ {+∞} is said to be lower semi-
continuous (sequentially lower semicontinuous, resp.) iff for any a ∈ R the sublevel set
{v ∈ X : f(v) ≤ a} is closed (sequentially closed, resp.), or equivalently iff the epigraph of f is
closed (sequentially closed, resp.) in the product topology of X × R.

• Theorem 6.7 (Mazur) Let X be a normed space. Then:
(i) A convex subset of X is closed iff it is weakly closed.
(ii) A quasiconvex function f : X → R ∪ {+∞} is lower semicontinuous iff it is weakly lower

semicontinuous.
(iii) A linear functional X → C is continuous iff it is weakly continuous.

Proof. Any closed convex subset is weakly closed, by Corollary 4.7 and because any closed
half-space is weakly closed. The converse is trivial. Part (i) is thus established.

Part (ii) follows from part (i), since a function f : X → R ∪ {+∞} is lower semicontinuous
(weakly lower semicontinuous, resp.) iff its epigraph is closed (weakly closed, resp.) in the
product topology of X × R.

For any real functional f , part (iii) follows from part (ii), as f and −f are both convex.
By applying this property to the real and imaginary parts, this also holds for any complex
functional. 2

The next result is somehow surprising.

Corollary 6.8 * [Mazur] Let X be a normed space, and un → u weakly in X. Then u is
the strong limit of a sequence {ũm} of suitable (finite) convex combinations of elements of the
sequence {un}. That is, for any m ∈ N there exist `m ∈ N and λm,k ≥ 0 for 1 ≤ k ≤ `m, with∑`m

k=1 λm,k = 1, such that

ũm :=
∑`m

k=1 λm,kuk → u in X, as m→∞. (6.13)
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Proof. Let us set S := {un}, and notice that co(S) (the closure of the convex hull of S) is
convex, as the closure of any convex set is convex. [Ex] By Theorem 6.7, any weak limit of a
sequence in S belongs to co(S). Thus u ∈ co(S), that is, u is the strong limit of a sequence of
elements of co(S). 2

7 Dimension

In this section we characterize finite-dimensional normed spaces in several ways. We begin with
a statement which does not involve weak topologies.

Theorem 7.1 (i) On KN all norms are equivalent.
(ii) For any normed spaces X1 and X2, if X1 has finite dimension then any linear mapping

L : X1 → X2 is continuous.
(iii) A normed space X over K has finite dimension iff it is topologically isomorphic to KN

for some N ≥ 0.
(iv) Any two normed spaces X1 and X2 of finite dimension are topologically isomorphic iff

they have the same dimension.
(v) A normed space X over the field K has finite dimension if all linear functionals X → K

are continuous.

Proof. (i) Let us denote by {ei : i = 1, ..., N} the family of unit vectors, and set ui = u · ei
for any u ∈ KN and any i. It suffices to show that any norm ‖ · ‖ on KN is equivalent to the
maximum norm ‖u‖∞ = maxi |ui|.

By setting C =
∑N

i=1 ‖ei‖, we have

‖u‖ ≤
∑N

i=1 |ui|‖ei‖ ≤ C‖u‖∞ ∀u ∈ KN . (7.1)

On the other hand, f(u) = ‖u‖ defines a real-valued function which is continuous on (KN , ‖ ·
‖∞), since

|f(u)− f(v)| =
∣∣‖u‖ − ‖v‖∣∣ ≤ ‖u− v‖ (7.1)

≤ C‖u− v‖∞ ∀u, v ∈ KN .

Hence f attains its minimum c on S = {‖u‖∞ = 1}, which is compact for the topology induced
by the norm ‖ · ‖∞. Moreover c > 0 since f > 0 on S. It follows that

c ≤ ‖‖u‖−1
∞ u‖ i.e., c‖u‖∞ ≤ ‖u‖ ∀u ∈ KN .

The norms ‖ · ‖ on KN and ‖ · ‖∞ are thus equivalent.

(ii) This is left to the Reader.

(iii) If X ' KN , then any topological isomorphism L : KN → X is also an algebraic isomor-
phism. Hence dim(X) = dim(KN ) = N .

For the converse, let dim(X) = N . By part (ii), any algebraic isomorphism between X and
KN is also a topological isomorphism.

(iv) If X1 and X2 have the same dimension, then they are algebraically isomorphic to KN . By
part (i) then they are mutually topologically isomorphic.

Conversely, if they are mutually topologically isomorphic, then by part (iii) they are topolog-
ically isomorphic to the same KN ; hence they have the same dimension.
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(v) By contradiction, let us assume that X is infinite-dimensional. Let {un} be a sequence
of linearly independent elements of X of unit norm, and set f(un) = n for any n. Hence
n−1un → 0, but f(n−1un) = 1 for all n. By a simple procedure based on the Hausdorff
maximality principle (2.1), f can be extended to a linear functional f : X → K, which is then
unbounded, hence discontinuous. 2

The next two results cast some light upon the weak topology in infinite-dimensional normed
spaces.

Proposition 7.2 A normed space X has infinite dimension iff all nonempty weakly open subsets
of X are unbounded. In this case, any weakly open set that includes 0 contains a closed subspace
of infinite dimension.

If X has a predual then the same holds for the weak star topology.

Proof. If X = KN , then the set A = {u : |ui| < ε for i = 1, ..., N} is bounded, nonempty and
weakly open. This proves the “if”-part.

Next let us assume that X has infinite dimension. Let A be a nonempty weakly open subset
of X; without loss of generality we can assume that A contains the origin. By construction of
the weak topology from the subbasis (6.2), there exists a finite set {f1, . . . , fm} ⊂ X ′ such that
M :=

⋂
i f
−1
i (0) ⊂ A. As M is the kernel of the operator (f1, . . . , fm) ∈ L(X;Km), it is an

infinite-dimensional closed subspace of X.
This also proves the second statement of the thesis.
For the weak star topology the proof is similar. 2

Corollary 7.3 A normed space X has finite dimension iff the strong and the weak topology
coincide on X.

Remarks. The following holds in any infinite-dimensional normed space X.
(i) As weakly open sets are unbounded, the open unit ball B0

X is not weakly open. It even has
no interior point for the weak topology.

(ii) By Mazur’s Theorem 6.7, the closed unit ball is weakly closed. This set coincides with its
weak boundary, as it has no interior point in the weak topology.

(iii) The sphere, {v ∈ X : ‖v‖ = 1}, is closed but not weakly closed. For example, if X = `2

the canonical sequence of unit vectors {en} weakly converges to the origin.
If X has a predual, then analogous properties hold for the weak star topology.

Here is a further property along the same line.

Proposition 7.4 In any infinite-dimensional normed space X, the unit sphere {v ∈ X : ‖v‖ =
1} is weakly dense in the unit ball BX .

Analogously, the unit sphere {f ∈ X ′ : ‖f‖ = 1} is weakly star dense in the unit ball B′X .

Proof. Let u ∈ BX , and A be a weak neighborhood of u. By Proposition 7.2, the weakly open
set A − u (:= {v − u : v ∈ A}) contains a straight line {tw : t ∈ R} for some w ∈ X, w 6= 0.
As ‖u‖ < 1, it follows that ‖u + tw‖ = 1 for a suitable t ∈ K. Any weak neighborhood of any
point of BX thus contains a point of the unit sphere. We conclude that the unit sphere of BX
is weakly dense in BX .

The proof of the second statement is similar. 2
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Proposition 7.5 (i) The weak topology of a normed space X is metrizable (i.e., it is induced
by a metric) iff the space is finite-dimensional.

(ii) If X is a Banach space, then the weak star topology of its dual X ′ is metrizable iff X is
finite-dimensional.

Proof. The “if” part of (i) is already known. Let us assume that dim(X) = ∞ and that the
weak topology is induced by a metric d. By Proposition 7.2, for any n ∈ N then there exists
un ∈ X with d(un, 0) < 1/n and ‖un‖ > n. The sequence {un} thus weakly converges to 0,
although it is unbounded in norm; this contradicts part (i) of Proposition 6.3.

The proof of part (ii) is based on part (ii) of Proposition 6.3 and is analogous. 2

If X is not complete, it may happen that dim(X) =∞ and nevertheless the weak star topology
of X ′ is metrizable.

7.1 A Riesz theorem

Lemma 7.6 (Riesz) Let M be a proper closed subspace of a normed space X over K, and let
θ < 1. Then

∃u ∈ X : ‖u‖ = 1, d(u,M) = inf
{
‖u− v‖ : v ∈M

}
≥ θ. (7.2)

Proof. Let us fix any w ∈ X \M . As M is closed, c := inf {‖w − v‖ : v ∈ M} > 0. Hence
there exists z ∈ M such that ‖w − z‖ ≤ c/θ. Let us set u := (w − z)/‖w − z‖, and select any
v ∈M . As z + ‖w − z‖v ∈M , we have

∥∥w − z − ‖w − z‖v∥∥ ≥ c. Therefore

‖u− v‖ =
1

‖w − z‖
∥∥w − z − ‖w − z‖v∥∥ ≥ θ

c
c = θ.2 (7.3)

The Riesz Lemma holds for θ = 1 for reflexive spaces. [] For instance, it fails in X = {v ∈
C0([0, 1]) : v(0) = 0} for M = {v ∈ X :

∫ 1
0 v(s) ds = 0}. []

Theorem 7.7 (Riesz) The closed unit ball of a normed space is compact iff the space is finite-
dimensional.

Therefore any compact subset of an infinite-dimensional normed space has empty interior.

Proof. The “if” part is straightforward, since in X = KN (N ≥ 1), and thus in any finite-
dimensional space, a set is compact iff it is closed and bounded.

Let us next assume that X has infinite dimension, and prove the “only if” part. Via the Riesz
Lemma 7.6 we inductively construct a sequence {un} ⊂ X such that ‖un‖ = 1 for any n and
‖un − um‖ > 1/2 whenever n 6= m. This has no convergent subsequence. Thus the closed unit
ball of X is not compact. 2

In conclusion, we have seen that for any normed space over the field K the following conditions
are mutually equivalent:

— the space has finite dimension;
— the space is topologically isomorphic to KN for some N ≥ 0;
— the weak topology is metrizable;
— the algebraic dual coincides with the topological dual;
— the origin has a bounded weak neighbourhood;
— the weak and the strong topology coincide;
— a closed ball (equivalently, any closed ball) is compact.
Anyway in some infinite-dimensional spaces any weakly convergent sequence is strongly con-

vergent, by the Schur phenomen.
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8 Compactness

8.1 Strong compactness
The family of relatively compact subsets of a normed space includes bounded subsets of finite-

dimensional subspaces, convergent sequences, finite unions of sets of these two classes, and their
convex hull.

The next nontrivial result provides a precise characterization.

Theorem 8.1 (Grothendieck) A subset K of a Banach space X is relatively compact iff there
exists a vanishing sequence {un} in X such that K ⊂ co ({un}) ⊂ co ({un}). 31 []

Proof of the “if” part. Let {un} be as prescribed by the theorem. As un → 0, for any ε > 0
there exist m ∈ N such that {un} ⊂ {u1, ..., um} + B(0, ε). Let us denote the convex hull of
{u1, ..., um} by Aε; this is a bounded subset of a finite-dimensional subspace, hence it is totally
bounded. Since Aε + B(0, ε) is convex and includes {un}, we infer that K ⊂ Aε + B(0, ε). We
have thus shown that

∀ε > 0, there exists a bounded subset Aε of a

finite-dimensional subspace such that K ⊂ Aε +B(0, ε).
(8.1)

Therefore K is totally bounded, hence relatively compact. 2

• Corollary 8.2 A subset K of a Banach space X is relatively compact iff (8.1) is fulfilled.

Proof. By the Grothendieck theorem, there exists a vanishing sequence {un} such that K ⊂
co ({un}). In the foregoing proof we have shown that this entails (8.1), and that in turn (8.1)
entails that K is relatively compact. 2

Grothendieck’s characterization shows that compact subsets in infinite-dimensional Banach
spaces are somehow rare. The prominent role of compactness in applications, e.g., in the analysis
of partial differential equations, induces one to search for a larger family of compact subsets,
corresponding to a coarser topology. We shall see that a satisfactory answer is provided by the
use of the weak star topology i n dual spaces.

Some topological notions. A topological space A is called compact iff every open covering
of A has a finite subcovering. On the other hand A is called sequentially compact iff every
sequence in A has a subsequence that converges to an element of A. In metrizable spaces the
two properties are equivalent, but in nonmetrizable topological spaces in general there is no
implication between them.

A subset A of a Hausdorff space H is called relatively compact in H iff its closure A is
compact. A is called relatively sequentially compact iff every sequence in A has a convergent
subsequence (whose limit however may not belong to A).

8.2 Weak and weak star compactness
Bounded subsets of L1(0, 1) need not be relatively weakly compact: consider e.g. the sequence
{nχ[0,1/n]}. 32 A further weakening of the topology is then in order in our search for compactness.
For dual spaces the weak star topology may be regarded as a sensible point of arrival, because
of the next classical result.

31 By co (A) we denote the closed convex hull of any set A.
32 The Schwartz theory of distributions shows that this sequence converges to δ0 (the celebrated delta of Dirac)

in a space which is larger than L1(0, 1).
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• Theorem 8.3 (Banach-Alaoglu) For any normed space X, the closed unit ball BX′ of the
dual space is weakly star compact.

* Proof. Each mapping f : X → K such that |f(x)| ≤ ‖x‖ for any x can be identified with a
subset of

P :=
∏
x∈X

[{x} ×B(0, ‖x‖)].

The dual unit ball BX′ equipped with the weak star topology, i.e. the topology of pointwise
convergence, is homeomorphic to a subset P̃ of P equipped with the restriction of the product
topology of P . The space P is compact because of the Tychonoff lemma below. If we show that
P̃ is closed in P , we can then conclude that BX′ is weakly star compact.

In order to prove this property, let us define the sets

Ax,y = {f ∈ F : f(x+ y)− f(x)− f(y) = 0} ∀x, y ∈ X,
Sλ,x = {f ∈ F : f(λx)− λf(x) = 0} ∀λ ∈ K, ∀x ∈ X,

and notice that

BX′ =

( ⋂
x,y∈X

Ax,y

)
∩
( ⋂
λ∈K,x∈X

Sλ,x

)
.

As each Ax,y and each Sλ,x are identified with closed subsests of P , the same holds for BX′ . 2

Lemma 8.4 (Tychonoff) Any Cartesian product of compact topological spaces is compact, if it
is equipped with the product topology. []

Corollary 8.5 For any normed space X, any bounded subset of X ′ is relatively weakly star
compact.

By the next statement, any normed space can be identified with a closed subspace of C0(K),
for a suitable compact K.

* Proposition 8.6 Let X be a Banach space, equip BX′ with the weak star topology and
C0(BX′) with the max norm. Then X is isometrically isomorphic to a closed subspace of
C0(BX′).

Proof. By the Banach-Alaoglu Theorem 8.3, BX′ is weakly star compact; hence C0(BX′) is
a Banach space. Denoting by J the canonical imbedding X → X ′′, the operator J̃ : X →
C0(BX′) : u 7→ Ju

∣∣
BX′

(the restriction of Ju to BX′) is an isometry, because for any u ∈ X we

have
‖J̃u‖∞ = max

f∈BX′
|(J̃u)(f)| = max

f∈BX′
| < f, u > | = ‖u‖X .

As X is complete, J̃(X) is a closed subspace of C0(BX′). 2

“Thus, in a sense the entire theory of normed spaces is contained in the theory of subspaces of
normed spaces C0(K) such that K is a compact Hausdorff space. This by no means trivializes
the theory of normed spaces, but rather serves to point out the richness of the theory of the
spaces C0(K).” [Megginson p. 231] (verbatim).

Next we state a theorem that is often used in the analysis of partial differential equations. 33

First, we outline the diagonalization technique that is used in the proof; this simple result has
many other applications in analysis.

33 This is the original formulation of the theorem of weak star compactness that was given by Banach, and
preceded Alaoglu’s Theorem 8.3.
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Lemma 8.7 Let S be a set, and {fn} be a sequence of mappings fn : S → K such that {fn(x)}
is bounded for all x ∈ S. Let {xj} be a sequence in S. Then there exists a subsequence {fnk} of
{fn} such that {fnk(xj)} converges for all j ∈ N.

Proof. By the boundedness of {fn(x)}, there exists a subsequence {f̃1,n} of {fn}such that

{f̃1,n(x1)} converges. For the same reason there exists a subsequence {f̃2,n} of {f̃1,n} such that

{f̃2,n(x2)} converges; moreover, {f̃2,n(x1)} converges. By iterating this procedure, for any k ∈ N,

we find a subsequence {f̃k,n} of {fn} such that limn→∞ f̃k,n(xj) exists for all j ≤ k. Finally, we

set fnk = f̃k,k. The diagonalized sequence {fnk} has the desired property, as {f̃m,m}m≥k is a

subsequence of {f̃k,n}n≥k for any k. 2

• Theorem 8.8 (Banach) For any separable normed space X, BX′ is weakly star sequentially
compact. Any bounded subsets of X ′ is thus relatively weakly star sequentially compact.

Proof. As X is separate, it has a countable dense subset {un}. The thesis is then a direct
consequence of the diagonalization Lemma 8.7. 2

Therefore any bounded sequence in X ′ has a weakly star convergent subsequence.

Remark 8.9 (i) Theorem 8.8 may fail if X is not separable, e.g. X = `∞. For any p ∈ [1,∞]
and any j ∈ N, let us define the linear and continuous projection πj : u = {un} 7→ uj for any
u ∈ `p: this is an element of (`p)′. It is easy to see that πj ⇀ 0 in (`p)′ for any p 6=∞; but {πj}
has no weakly star convergent subsequence in (`∞)′.

(ii) Whenever X is an infinite-dimensional Banach space, X ′ is not locally compact w.r.t. the
weak star topology, although by the Banach-Alaoglu theorem closed bounded subsets of X ′ are
weak star compact. Actually, any weak star neighbourhood of the origin is unbounded, hence
noncompact.

9 The Ascoli-Arzelà theorem

In this section we state and prove a clasical theorem, which is one of the main results of com-
pactness, jointly with the Banach-Alaoglu theorem.

9.1 The Ascoli-Arzelà theorem

The following classical result conveys an important characterization of (relative) compactness
in C0(K) (K being a compact metric space). This is relevant since the space C0(K) has no
predual, and thus here one cannot use the Banach-Alaoglu theorem.

• Theorem 9.1 (Ascoli-Arzelà) Let K be a compact metric space. A subset F of C0(K) is
relatively compact if (and only if) it is (equi)bounded as well as uniformly equicontinuous in
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C0(K), that is, 34

sup
{
|u(x)| : x ∈ K,u ∈ F

}
< +∞, (9.2)

sup
{
|u(x)− u(y)| : x, y ∈ K, d(x, y) ≤ h, u ∈ F

}
→ 0 as h→ 0. (9.3)

*Proof. It suffices to show that a Cauchy subsequence can be extracted from any sequence
in F . Let {xj}j∈N be a (countable) dense subset in K. Because of the boundedness of F ,
from {un} one can extract a subsequence {un1} such that {un1(x1)} converges. Similarly, for
j = 2, 3, ..., from {unj−1} one can iteratively extract a subsequence {unj} in such a way that
{unj (x`)} converges for all ` ≤ j. By a diagonalization procedure, for any m ∈ N let us then
define ũm as the mth element of the sequence unm . Thus {ũm} is a subsequence extracted not
only from the initial sequence {un} but also from {unj} for any j ∈ N; moreover {ũm(xj)}
converges for any j ∈ N.

Let us now fix any ε > 0. By equicontinuity there exists a δ > 0 such that

|ũm(xj)− ũm(y)| ≤ ε ∀y ∈ K ∩B(xj , δ),∀j,m ∈ N. (9.4)

By the compactness of K, a finite subcovering {B(xj , δ)}j∈J can be extracted from the family
of the open balls {B(xj , δ)}j∈N. Therefore, for any m′,m′′,

|ũm′(y)− ũm′′(y)|
≤ |ũm′(y)− ũm′(xj)|+ |ũm′(xj)− ũm′′(xj)|+ |ũm′′(xj)− ũm′′(y)|
(9.4)

≤ ε+ |ũm′(xj)− ũm′′(xj)|+ ε ∀y ∈ K ∩B(xj , δ), ∀j ∈ J,

whence
max
y∈K
|ũm′(y)− ũm′′(y)| ≤ max

j∈J
|ũm′(xj)− ũm′′(xj)|+ 2ε.

For any j, {ũm(xj)} is a Cauchy sequence (in R) as it converges. {ũm} is then a Cauchy sequence
in C0(K). 2

• Corollary 9.2 Let Ω be a bounded convex open subset of RN . For any nonnegative integers
m,n with m > n, any bounded subset Cm(Ω̄) is relatively compact in Cn(Ω̄).

Proof. It is easily checked that it suffices to prove the thesis for m = 1 and n = 0, since then
the general statement follows by applying this result to the derivatives. For any u ∈ C1(Ω̄) and
any x, y ∈ Ω, by the convexity of Ω and the mean-value theorem, there exists λ ∈ [0, 1] such
that, setting ξλ = λx+ (1− λ)y (∈ Ω),

|u(x)− u(y)| = |∇u(ξλ) · (y − x)| ≤ sup
Ω̄

|∇u| |y − x| ≤ ‖u‖C1(Ω̄) |y − x|.

Any bounded subset F of C1(Ω̄) is thus equicontinuous. As F is also bounded in C0(Ω̄), by
the Ascoli-Arzelà theorem it is then relatively compact in C0(Ω̄). 2

34Because of the compactness of K, (9.3) is equivalent to the following (otherwise weaker) condition of pointwise
equicontinuity:

sup
u∈F

sup
{
|u(x)− u(y)| : y ∈ K, d(x, y) ≤ h, u ∈ F

}
→ 0 as h→ 0, ∀x ∈ K. [Ex]

In terms of quantifiers, this property also reads

∀ε > 0,∃h > 0 : ∀u ∈ F , ∀x, y ∈ K, [d(x, y) ≤ h⇒ |u(x)− u(y)| ≤ ε.] (9.1)
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10 Adjoint Operator

Throughout this section X and Y will be Banach spaces over K (= R or C).

10.1 Definition and basic properties
Let L ∈ L(X;Y ). By setting

L′f := f ◦ L (∈ X ′) ∀f ∈ Y ′, (10.1)

we define a linear mapping L′ : Y ′ → X ′, called the Banach adjoint (or just the adjoint) of
L. Using duality pairings, an equivalent definition of L′ is provided by

〈L′f, u〉 := 〈f, Lu〉 ∀f ∈ Y ′,∀u ∈ X. (10.2)

Since

sup
‖f‖≤1

‖L′f‖ = sup
‖f‖≤1

sup
‖u‖≤1

|〈L′f, u〉|

= sup
‖u‖≤1

sup
‖f‖≤1

|〈f, Lu〉| = sup
‖u‖≤1

‖Lu‖ = ‖L‖,
(10.3)

we have L′ ∈ L(Y ′;X ′) with ‖L′‖ = ‖L‖. By iterating this process, we obtain the adjoint of the
adjoint: L′′ = (L′)′ : X ′′ → Y ′′.

Next we state some simple properties, and leave the proofs to the reader.

Proposition 10.1 Let X and Y be Banach spaces and L ∈ L(X;Y ). Then:
(i) The mapping L 7→ L′ is linear, that is,

(L1 + L2)′ = L′1 + L′2, (αL)′ = αL′, (10.4)

for any L,L1, L2 ∈ L(X;Y ) and any scalar α.
(ii) Denoting by JX : X → X ′′ and JY : Y → Y ′′ the canonical embeddings,

L′′ ◦ JX = JY ◦ L ∀L ∈ L(X;Y ). (10.5)

(iii) For any Banach spaces X1, X2, and X3,

(L2 ◦ L1)′ = L′1 ◦ L′2 ∀L1 ∈ L(X1;X2), ∀L2 ∈ L(X2;X3). (10.6)

(iv) For any L ∈ L(X;Y ), L′ is invertible iff so is L. In this case

(L′)−1 = (L−1)′. (10.7)

Moreover, L′ is an isometric isomorphism iff so is L.
(v) If X and Y are reflexive, then the mapping L(X;Y )→ L(Y ′;X ′) : L 7→ L′ is surjective.

To prove (10.7), notice that (L−1)L = I = L(L−1), whence by (10.6)

L′(L−1)′ = I ′ = I = (L−1)′L′.

Examples. (i) Let X = KN , Y = KM , let L ∈ L(X;Y ) be represented by the matrix
A ∈ KM×N with respect to the canonical basis. Through the isomorphism between X and X ′
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given by 〈x′, u〉 = xTu =
∑

j xjuj , x ∈ KN , and analogously for Y , the adjoint L′ ∈ L(Y ′;X ′)

is represented by the transposed matrix AT ∈ KN×M of A.
(ii) Let us compute the adjoints S′r, S

′
` ∈ L(X ′) of the shift operators Sr, S` for X = `pK,

1 ≤ p < +∞. Let us make use of the isometry between (`pK)′ and `qK, 〈f, u〉 =
∑

k∈N fkuk for
any u ∈ `pK, where q = p/(p− 1) if p 6= 1 and q = ∞ if p = 1. Then for any u ∈ `pK and f ∈ `qK
we have

〈S′rf, u〉 = 〈f, Sru〉 =

∞∑
k=2

fkuk−1 =

∞∑
h=1

fh+1uh = 〈S`f, u〉, (10.8)

and analogously 〈S′`f, u〉 = 〈Srf, u〉. Thus S′r = S`, S
′
` = Sr. Incidentally, notice that S`Sr = I,

but SrS` 6= I.

10.2 Annihilators
For any subset M of X, we define the right annihilator of M in X ′ as

M0 = {f ∈ X ′ : 〈f, v〉 = 0, ∀v ∈M}.35 (10.9)

For any subset N of X ′, we similarly define the right annihilator of N in X ′′, and also the left
annihilator of N in X as

0N = {v ∈ X : 〈f, v〉 = 0, ∀f ∈ N}. (10.10)

Denoting the canonic isomorphism X → X ′′ by J , we have J(0N) = N0. Note that M0 is
weakly star closed in X ′, and 0N is weakly closed in X.

* Proposition 10.2 Let X be a Banach spaces. Then:
(i) For any linear subspace M of X,

0(M0) = M
weak

= M
strong

. (10.11)

(ii) For any linear subspace N of X ′,

(0N)0 = N
weak∗ ⊃ N strong

, (10.12)

possibly with strict inclusion. However if X is reflexive, then (0N)0 = N
weak

= N
strong

.

*Proof. Since 0(M0) and (0N)0 are weakly resp. weakly star closed, the inclusions “⊃” that are
implicit in the equalities in (10.11) and (10.12) directly follow from the definitions. The reverse

inclusion “⊂” holds in (10.11), since for any u /∈ M strong
there is an f ∈ M0 with f(u) 6= 0 by

a corollary of the Hahn-Banach theorem. It remains to prove “⊂” for (10.12). Let f ∈ X ′ with

f /∈ Nweak∗
; it suffices to find a v ∈ 0N such that f(v) 6= 0.

To this end, let U be a weak star neighbourhood of 0 such that (f+U)∩N = ∅, or equivalently
(N − f)∩U = ∅. According to the construction of the weak star topology, we can assume U to
be of the form {h ∈ X ′ : |h(uk)| < ε, 1 ≤ k ≤ n} where u1, . . . , un ∈ X and ε > 0. Let us define
T : X ′ → Rn by (Tg)k = g(uk) for 1 ≤ k ≤ n. Since N (T ) ⊂ U and (N − f) ∩ U = ∅, we have
Tf /∈ T (N). By the Hahn-Banach theorem there exists w ∈ (Rn)′ ' Rn such that 〈w, Tf〉 6= 0

35 Some authors use of the symbol “⊥” for both the annihilator (a subset of X ′) and, in Hilbert space, the
orthogonal complement (a subset of X) is a standard practice, although it might lead to confusion. Some authors
actually name annihilators orthogonal complements in Banach space, too.
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and 〈w, Tg〉 = 0 for every g ∈ N . Setting v =
∑

k wkuk we obtain that f(v) =
∑

k wkf(uk) =
〈w, Tf〉 6= 0 and that g(v) = 〈w, Tg〉 = 0 for every g ∈ N . Thus v ∈ 0N and the proof is
complete.

The final statement is a simple consequence of (10.12). 2

The range R(L) and the null space N (L) of an operator L are related to the range and null
space of its adjoint L′ as follows. 36

• Theorem 10.3 For any L ∈ L(X;Y ),

R(L)0 = N (L′), 0R(L′) = N (L), (10.13)

N (L)0 = R(L′)
weak∗

, 0N (L′) = R(L). (10.14)

Proof. Let us prove (10.13). If v /∈ N (L), then, as Lv 6= 0, by the Hahn-Banach theorem
〈L′g, v〉 = 〈g, Lv〉 6= 0 for some g ∈ Y ′. Thus v /∈ 0R(L′) and consequently 0R(L′) ⊂ N (L).

The other three inclusions in (10.13) directly follow from the definitions. [Ex] For instance, for
any v ∈ N (L) and any g ∈ Y ′, 〈L′g, v〉 = 〈g, Lv〉 = g(0) = 0; thus v ∈ 0R(L′) and consequently
N (L) ⊂ 0R(L′).

The equalities (10.14) are a consequence of those in (10.13) and those in Proposition 10.2.

Namely, N (L)0 = (0R(L′))0 = R(L′)
weak∗

, and 0N (L′) = 0(R(L)0) = R(L). 2

36 If R(L) is closed, the closed range theorem given below will provide additional information.
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Chapter II — Hilbert Spaces

Contents: 1. The inner product. 2. Orthogonality and projections. 3. The representation
theorem 4. Orthonormal systems and Hilbert bases.

11 The Inner Product

11.1 Inner products and basic properties
Let H be a linear space over the field K. A mapping (·, ·) : H × H → K is called an inner

product (or a scalar product) 37 over H iff it fulfills the following properties:

the functional H → K : u 7→ (u, v) is linear over K ∀v ∈ H, (11.15)

(u, v) = (v, u) ∀u, v ∈ H, (11.16)

(u, u) > 0 ∀u ∈ H \ {0}.38 (11.17)

Hence (u, u) ∈ R for all u ∈ H, and

(u, u) = 0 ⇔ u = 0. (11.18)

The properties (11.15) and (11.16) obviously entail that

the functional H → K : v 7→ (u, v) is linear over K ∀u ∈ H. (11.19)

A linear space over C (R, resp.) equipped with an inner product is called a complex (real,
resp.) inner-product space, or a pre-Hilbert space. Here is some further terminology:

(11.16) ⇔ (·, ·) is Hermitian (or skew-symmetric) if K = C, symmetric if K = R;
(11.19) ⇔ (u, ·) is antilinear, or conjugate-linear, or skew-linear;
(11.15) and (11.19) ⇔ (·, ·) is sesquilinear if K = C, bilinear if K = R.

Henceforth, when dealing with an inner-product space, we set

‖u‖ :=
√

(u, u) ∀u ∈ H. (11.20)

By (11.15) – (11.17) above and by (11.23) ahead, we infer that ‖ · ‖ is indeed a norm over H,
which is then called a Hilbert norm. Dealing with an inner-product space we shall always
refer to this norm, if not otherwise specified.

Proposition 11.1 If H is an inner-product space 39 over the field K, then

|(u, v)| ≤ ‖u‖‖v‖ ∀u, v ∈ H (Cauchy-Schwarz inequality), (11.21)

‖u+ v‖2 + ‖u− v‖2 = 2‖u‖2 + 2‖v‖2 ∀u, v ∈ H (parallelogram identity), (11.22)

‖u+ v‖ ≤ ‖u‖+ ‖v‖ ∀u, v ∈ H (triangle inequality), (11.23)

the mapping (·, ·) : H ×H → K is continuous. (11.24)

37 The notation (·, ·) is traditional. Unfortunately it is also used to denote pairs.
39 Actually, here (11.15) and (11.16) suffice, the definiteness (11.17) is not needed as the proof shows.
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Proof. (i) Let us prove (11.21). Without loss of generality, we can assume that K = C and
v 6= 0. By (11.15) and (11.16), 40

0 ≤ (u+ λv, u+ λv) = (u, u) + |λ|2(v, v) + (λv, u) + (u, λv)

= ‖u‖2 + |λ|2‖v‖2 + 2Re[λ(v, u)] ∀λ ∈ C.

By taking λ = −(u, v)/‖v‖2, we then get

0 ≤ ‖u‖2 +
|(u, v)|2

‖v‖2
− 2
|(u, v)|2

‖v‖2
= ‖u‖2 − |(u, v)|2

‖v‖2
,

and this yields (11.21).
(ii) In order to check (11.22), notice that

‖u+ v‖2 = (u+ v, u+ v) = ‖u‖2 + (u, v) + (v, u) + ‖v‖2

= ‖u‖2 + 2Re(u, v) + ‖v‖2,
(11.25)

and similarly ‖u− v‖2 = ‖u‖2 − 2Re(u, v) + ‖v‖2. Summing these equalities we get (11.22).
(iii) By (11.25) and by the Cauchy-Schwarz inequality we have

‖u+ v‖2 ≤ ‖u‖2 + 2‖u‖‖v‖+ ‖v‖2 =
(
‖u‖+ ‖v‖

)2 ∀u, v ∈ H,

that is (11.23).
(iv) Let two sequences {un} and {vn} in H be such that un → u and vn → v in the norm

topology. We have

|(u, v)− (un, vn)| ≤ |(u, v)− (un, v)|+ |(un, v)− (un, vn)|
≤ ‖u− un‖‖v‖+ ‖un‖‖v − vn‖ ;

as ‖un‖ is uniformly bounded, the latter sum vanishes as n→∞. 2

It is promptly checked that the Cauchy-Schwarz inequality (11.21) is reduced to an equality
iff u and v are linearly dependent. The same holds for the triangle inequality (11.23).

Remark. Some properties of inner-product spaces involve just a finite number of elements,
have a geometric content, and can be expressed in terms of the linear subspace that is spanned
by those elements; this can make their proof especially simple. This is the case e.g. for (11.21)–
(11.23).

11.2 The polarization identity
The denomination parallelogram identity of (11.22) is easily understood by considering the

parallelogram of vertices 0, u, v, u + v in the two-dimensional subspace spanned by u and v
(assuming u, v 6= 0 and u 6= v). By (11.22), it is promptly checked that the sum of the squared
lengths of the sides equals the sum of the squared lengths of the diagonals. In the plane this is
known as the Apollonius theorem.

We saw that the inner product determines a norm which fulfills the parallelogram identity
(11.22). The polarization identity that is displayed in the next lemma relates the inner product
to the corresponding norm. More generally, Theorem 11.2 below shows that any normed space
in which the norm fulfills the parallelogram identity (11.22) is an inner-product space, in which
the inner product is defined via the polarization identity. The parallelogram identity thus
characterizes inner-product spaces in the class of normed spaces. 41

40 We shall still denote by Re(z) the real part of any complex number z.
41 The are several other characterizations. See e.g. [de Figueiredo-Karlovitz].
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Theorem 11.2 (P. Jordan, von Neumann) If H is a complex normed space equipped with a
norm ‖ · ‖ that fulfills the parallelogram identity (11.22), then

(u, v) = 1
4

∑4
n=1 i

n‖u+ inv‖2

= 1
4

[
(‖u+ v‖2 − ‖u− v‖2) + i(‖u+ iv‖2 − ‖u− iv‖2)

]
∀u, v ∈ H

(11.26)

is an inner product, and is related to the norm ‖ · ‖ by (11.20).
If H is a real space, then (11.26) is replaced by

(u, v) =
1

4

(
‖u+ v‖2 − ‖u− v‖2

)
=

1

2

(
‖u+ v‖2 − ‖u‖2 − ‖v‖2

)
∀u, v ∈ H.

(11.27)

For K = R the proof is straightforward. For K = C it is a slightly technical (and boring). 2

11.3 Hilbert spaces
An inner-product space is called a Hilbert space whenever it is complete w.r.t. the induced

norm. A (closed) Banach subspace of a Hilbert space is itself a Hilbert space, and is called a
Hilbert subspace. Henceforth we shall confine ourselves to Hilbert spaces, which is the most
relevant class for applications, although for several results the completeness is not really needed.

Two Hilbert space H1 and H2 are called isometrically isomorphic iff there exists a linear
surjective operator U : H1 → H2 such that (Uu,Uv)H2 = (u, v)H1 for any u, v ∈ H1. This is
tantamount to ‖Uu‖H2 = ‖u‖H1 for any u ∈ H1 Such an operator is called unitary.

11.4 Examples
(i) For any N ≥ 1, KN is a Hilbert space over K equipped with the inner product

(u, v)KN :=
∑N

n=1 unvn ∀u, v ∈ KN . (11.28)

CN can also be equipped with the structure of Hilbert space over R: this corresponds to
identifying R2N with CN via the mapping (u1, ..., u2N ) 7→ (u1 + iu2, ..., u2N−1 + iu2N ).

(ii) As a particular case of the example (ii), the sequence space `2 (= `2K) is a Hilbert space
over K equipped with the inner product

(u, v) :=
∑∞

n=1 unvn ∀u = {un}, v = {vn} ∈ `2. (11.29)

(iii) For any measure space (A,A, µ), L2(A,A, µ;K) is a Hilbert space over K equipped with
the inner product

(u, v) :=
∫
A u(x)v(x) dµ(x) ∀u, v ∈ L2(A,A, µ). (11.30)

(iv) For any N ≥ 1, one can also define L2(A,A, µ;KN ), L2(A,A, µ;KN×N ), 42 `N , `N×N and
so on in a obvious way; these are also Hilbert spaces.

(v) The construction of example (iii) can be extended as follows. For a (nonempty) index
set A, let {Hα}α∈A be a family of Hilbert spaces over the field K, each Hα being equipped
with the inner product (·, ·)α and the associated norm ‖ · ‖α. Let us define the linear space
H :=

∏
αHα of all mappings α 7→ uα such that the real family {‖uα‖α : α ∈ A} is square

summable, i.e.,
∑

α∈A ‖uα‖2α < +∞. Any element of this space has only a finite number of
nonvanishing components uα.

42 This is a space of matrix-valued functions.
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This is a Hilbert space over K, called a Hilbert direct sum, if it is equipped with the natural
scalar product

(u, v) :=
∑

α∈A(u, v)α ∀u, v ∈ H. (11.31)

This topology coincides with the product topology iff the index set A is finite.
(vi) The linear space of sequences of K that only contain a finite number of nonvanishing

elements is a noncomplete inner-product subspace of `2. Its completion coincides with the
Hilbert space `2. (This is a particular case of the previous example.)

(vii) Let Ω be a bounded domain of RN (N ≥ 1). Let us equip the linear space of continuous
functions Ω̄→ K with the inner product

(u, v) :=
∫

Ω u(x)v(x) dx ∀u, v ∈ C0(Ω̄).

This space is not complete. For instance, for Ω = ]−1, 1[, {un : x 7→ arctan(nx)}n∈N is a Cauchy
sequence in this space, but it does not converge to any continuous function (it converges a.e.
to the discontinuous function π

2 sign). The completion of this space coincides with the Hilbert
space L2(−1, 1). [Ex]

On the other hand, `p, Lp(0, 1) with p 6= 2 and Ck(Ω) (k ∈ N) are not Hilbert spaces.
Actually, their respective norms do not fulfill the parallelogram identity, and these spaces are
not Hilbertizable.

11.5 Exercises

1. Let V be a complex linear space and b1(·, ·), b2(·, ·) be two sesquilinear mappings V ×V → C
such that b1(v, v) = b2(v, v) for any v ∈ V . Show that these two mappings then coincide
on the whole V × V .

2. Let V be a complex linear space and a mapping b(·, ·) : V × V → C be either sesquilinear
and symmetric (rather than skew-symmetric), or bilinear and skew-symmetric (rather than
symmetric). Show that then in either case b(u, v) = 0 for any u, v ∈ V .

3. Let V be a complex linear space. Show that a sesquilinear mapping (·, ·) : V × V → C is
Hermitian iff the associated quadratic mapping V → C : v 7→ (v, v) is real-valued.

Notice that this fails in real spaces (with “symmetric” in place of “Hermitian”)!

4. Let H be the set of all complex sequences {xn} such that

‖{xn}‖ :=
( ∞∑
n=1

‖xn‖4
)1/4

+
( ∞∑
n=1

‖xn‖2
)1/2

< +∞.

Check that this is a norm on H.

(i) Is this norm equivalent to a Hilbert norm?
(ii) Does H coincide with any of the known sequence spaces?
(iii) Formulate an analogous exercise in terms of Lebesgue functions ]0, 1[→ R (instead of
sequences, with integrals instead of series), and answer the analogous questions.

5. Let H be an inner-product space and x, y ∈ H. Show that

x ⊥ y ⇔ ‖x+ λy‖ ≥ ‖x‖ ∀λ ∈ K.

6. Let H be an inner-product space. Show that for any x, y, z ∈ H

‖x− z‖ = ‖x− y‖+ ‖y − z‖ ⇔ ∃λ ∈ ]0, 1[: y = λx+ (1− λ)z.
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7. Let H be an inner-product space and x, y ∈ H. Show that if H is a real space then

x ⊥ y ⇔ ‖x+ y‖2 = ‖x‖2 + ‖y‖2,

and find a counterexample for a complex space.

8. Let H be a complex inner-product space and x, y ∈ H. Show that

x ⊥ y ⇔ ‖ax+ by‖2 = a2‖x‖2 + b2‖y‖2 ∀a, b ∈ C.

9. Let {un} be a sequence in a Hilbert space H and u ∈ H be such that un → u weakly and
‖un‖ → ‖u‖. Prove that then un → u.

Hint: Develop the square ‖un − u‖2 ...

10. Let H be a Hilbert space, L : Dom(L) ⊂ H → H be a closed unbounded linear operator,
and equip the linear space X = {v ∈ H : Lv ∈ H} with the norm ‖v‖X = ‖v‖H + ‖Lv‖H
[which is named the norm of the graph of L in H].

(i) Check that this is a Banach space.
(ii) Is this space Hilbertizable?

11. Let 1 ≤ p ≤ +∞. In the linear space `p set ‖| · ‖| = ‖ · ‖`2 + ‖ · ‖`p .
(i) ‖| · ‖| is a norm for some p?
(ii) Is the corresponding space complete? (if not so, indicate the associated completed
space.)
(iii) Is ‖| · ‖| a Hilbert norm for some p?
(iv) Is ‖| · ‖| a Hilbertizable norm for some p?

12. * Exhibit a nonseparable Hilbert space.

Hint: A standard example uses the Cartesian product of a continuous families of copies
of the field K...

13. Consider the following classes:

B: Banach spaces, H: Hilbert spaces,

E : Euclidean spaces, P: Normed spaces with a predual,

F : Fréchet spaces, N : Normed spaces, R: Reflexive spaces.

Which inclusions hold among these spaces?

12 Orthogonality and Projections

The norm provides a distance that is positively homogeneous of degree one and invariant by

translation. The inner product allows one to define angles, in particular orthogonality, and then

orthogonal projections.

12.1 Orthogonality

Let H be an inner-product space. We shall say that two elements u, v ∈ H are orthogonal,

and write u ⊥ v, iff (u, v) = 0. More generally, we shall say that two (nonempty) subsets U and

V of H are orthogonal, and write U ⊥ V , iff (u, v) = 0 for any u ∈ U and any v ∈ V . We define

the orthogonal complement of any (nonempty) subset U of H as

U⊥ := {v ∈ H : (v, u) = 0 ∀u ∈ U};
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At variance with what occurs in general Banach spaces, in real inner-product spaces one can

measure angles: for any unit vectors u, v ∈ H we define the (nonoriented) angle formed by u

and v to be arccos (u, v).

12.2 Orthogonal projection on a convex set

• Theorem 12.1 Let K be a nonempty closed convex subset of a Hilbert space H. For any

u ∈ H there exists one and only one (orthogonal) projection w ∈ K such that

‖u− w‖ = inf{‖u− v‖ : v ∈ K}. (12.1)

This condition is equivalent to the variational inequality

Re (u− w, v − w) ≤ 0 ∀v ∈ K. (12.2)

The projection operator PK : u 7→ w is nonexpansive, that is,

‖PKu1 − PKu2‖ ≤ ‖u1 − u2‖ ∀u1, u2 ∈ H. (12.3)

Proof. (i) Let {vn} ⊂ K be a minimizing sequence for the distance from K, that is,

dn := ‖u− vn‖ → inf{‖u− v‖ : v ∈ K} =: d as n→∞.

The parallelogram identity yields

2‖u− (vn + vm)/2‖2 + 2‖(vn − vm)/2‖2

= ‖u− vn‖2 + ‖u− vm‖2 = d2
n + d2

m.

As (vn + vm)/2 ∈ K we have ‖u− (vn + vm)/2‖ ≥ d, so that by the preceding equality

2‖(vn − vm)/2‖2 ≤ d2
n + d2

m − 2d2 → 0.

Thus {vn} is a Cauchy sequence in H; by the completeness of H, it converges to some w ∈ K.

By the continuity of the norm then ‖u− w‖ = limn→∞ ‖u− vn‖ = d, namely (12.1).

(ii) Let w fulfil (12.1). For any v ∈ K and any t ∈ ]0, 1], w + t(v − w) ∈ K by the convexity

of K. Hence

‖u− w‖2 ≤ ‖u− [w + t(v − w)]‖2

= ‖u− w‖2 − 2tRe(u− w, v − w) + t2‖v − w‖2,

that is, 2tRe (u− w, v − w) ≤ t2‖v − w‖2. Dividing by t and passing to the limit as t → 0, we

then get (12.2). Conversely,

‖u− v‖2 = ‖(u− w)− (v − w)‖2

= ‖u− w‖2 + ‖v − w‖2 − 2Re(u− w, v − w)

(12.2)

≥ ‖u− w‖2 + ‖v − w‖2 ≥ ‖u− w‖2 ∀v ∈ K.

(iii) For any given u1, u2 ∈ H, let w1, w2 ∈ H satisfy (12.2) with u = u1 resp. u = u2, and

take v = w2 resp. v = w1. Summing the two inequalities we get

‖w1 − w2‖2 ≤ Re (u1 − u2, w1 − w2) ≤ ‖u1 − u2‖ ‖w1 − w2‖,
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whence ‖w1 − w2‖ ≤ ‖u1 − u2‖, i.e. (12.3). In particular, the choice u1 = u2 shows that (12.2)

defines a unique element w = PKu for any given u ∈ H. 2

Remarks. (i) A geometric interpretation provides a clear understanding of this theorem. For

instance, by drawing the intersection of K with the plane that contains u, w and v (assuming that

they are distinct and nonaligned), explains why (12.2) characterizes the orthogonal projection,

at least if H is a real Hilbert space.

(ii) For any normed space X, we call projection any mapping P ∈ L(X) such that P 2 = P .

Although one cannot define orthogonal projections in normed spaces, it is easily seen that if K

is a nonempty closed convex subset of a reflexive Banach space X, then for any u ∈ X there

exists a w ∈ K such that ‖u − w‖ = inf{‖u − v‖ : v ∈ K}; this is unique if X is uniformly

convex.

(iii) Let us denote by R2
∞ the space R2 equipped with the norm ‖(u1, u2)‖∞ = max{‖u1‖, ‖u2‖};

this is obviously a non-uniformly-convex reflexive Banach space. In this case the projection ex-

ists but need not be unique. Nevertheless R2
∞ is a Hilbert space, since the non-Hilbert norm

‖ · ‖∞ is equivalent to the Euclidean norm ‖ · ‖∞.

This does not contradict the theorem above, since it is understood that when we deal with a

Hilbert space we refer to the Hilbert norm, if not otherwise specified. 2

12.3 Orthogonal projection on a subspace

Corollary 12.2 Let V be a closed subspace of a Hilbert space H. The projection operator PV
is then linear and continuous. Moreover, for any u ∈ H,

w = PV u ⇔ (w − u, v) = 0 ∀v ∈ V. (12.4)

The latter is called a variational equation, and the linear and continuous operator PV is

named an orthogonal projection, or just a projection.

Proof. Let us assume that w = PV u. For any ṽ ∈ V , by selecting v = w ± ṽ (∈ V ) in (12.2),

we have Re(w − u, ṽ) = 0 for any ṽ ∈ V . By taking ṽ = v and ṽ = iv for any v ∈ V , we then

get Im(w−u, v) = 0. Therefore (w−u, v) = 0 for any v ∈ V . The converse implication and the

linearity of PV are straightforward. The continuity follows from (12.3). 2

Remarks. (i) In Theorem 12.1 the distance from the nonempty closed convex setK is minimized

without assuming any compactness property for K.

(ii) Theorem 12.1 rests upon the completeness of the set K, rather than that of H. Therefore

this result remains valid in noncomplete inner-product spaces, provided that the convex subset

K is complete. In particular the orthogonal projection either on a finite-dimensional linear

subspace V , or on a (nonempty) closed convex subset of V , thus exists also in noncomplete

inner-product spaces.

(iii) Variational inequalities and variational equations are extensively used in analysis, in

particular in convex analysis, in optimization, in the theory of PDEs, and so on. They also have

a large number of applications in mathematical physics, in economics, in operational research,

and so on.

12.4 Orthogonal decomposition
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• Theorem 12.3 Let A be a nonempty subset of a Hilbert space H, and M be the closure of

its linear span (i.e., M := span(A)). Then A⊥ = M⊥ is a subspace of H, and 43

M̄ = R(PM̄ ), M⊥ = N (PM̄ ), (12.5)

u = PM̄ (u) + PM⊥(u) ∀u ∈ H, (12.6)

H = M̄ ⊕M⊥. (12.7)

Moreover (M⊥)⊥ = M .

Because of (12.7), M⊥ is called the orthogonal complement of M . (Dealing with Hilbert

spaces, often we shall refer to it as the complement of M).

Proof. For any sequence {un} in H, if un ⊥ A for any n and un → u, then u ⊥ M , by the

continuity of the inner product; thus A⊥ is closed and A⊥ ⊂ M⊥. The opposite inclusion is

trivial.

For any u ∈ H, u−PMu ∈M⊥ by (12.4); thus u = PMu+ (u−PMu) ∈M +M⊥. Moreover,

if u ∈M ∩M⊥ then (u, u) = 0, that is, u = 0; (12.6) is thus established, and this yields (12.7).

By applying (12.7) to M⊥ we get H = M⊥ ⊕ (M⊥)⊥. Comparing this equality with (12.7),

we conclude that (M⊥)⊥ = M̄ . 2

12.5 Characterizations of orthogonal projections

Theorem 12.4 For any closed subspace M of a Hilbert space H, the projection operator PM is

continuous, and

(i) PM is idempotent, i.e., P 2
M = PM ;

(ii) PM is self-adjoint, i.e., (PMu, v) = (u, PMv) for any u, v ∈ H.

Conversely, any idempotent, self-adjoint, linear operator P : H → H coincides with the

projection on the closed subspace R(P ) (in particular, it is thus continuous).

Proof. The continuity directly follows from the nonexpansiveness (12.3).

For any u ∈ H, PMu = PMu+ 0 ∈M +M⊥, whence PM (PMu) = PMu. Thus (i) holds. For

any u, v ∈ H, (12.4) yields (PMu, v) = (PMu, PMv) = (u, PMv), i.e. (ii) is fulfilled.

Let us now assume that P : H → H is an idempotent, self-adjoint, linear operator. Properties

(i) and (ii) and the Cauchy-Schwarz inequality yield

‖Pu‖2 = (Pu, Pu) = (P 2u, u) = (Pu, u) ≤ ‖Pu‖ ‖u‖,

whence ‖Pu‖ ≤ ‖u‖; thus P is continuous. Let us set M := P (H); it suffices to show that

P = PM . For any sequence {un} in the linear subspace M , if un → u then Pu = limPun =

limun ∈M . Thus M is a closed subspace of H. For any u, v ∈ H, as P is self-adjoint we have

(u− Pu, Pv) = (Pu− P 2u, v) = (Pu− Pu, v) = 0.

Hence u− Pu ∈M⊥; thus P = PM . 2

Here is another characterization.

43 As usual, for any linear mapping L, we denote its range by R(L) and its null space by N (L). For any linear
subspaces A and B, by “H = A⊕B” we mean that H = A+B and A ∩B = {0}.
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Theorem 12.5 An operator P ∈ L(H) is an orthogonal projection iff P 2 = P and it is

nonexpansive, i.e., ‖P‖L(X) ≤ 1. Equality holds iff P 6≡ 0. []

Proposition 12.6 Let H be a Hilbert space and M,N be two subspaces. Then:

(i) The composition PMPN is an orthogonal projection iff PM and PN commute, i.e. PMPN =

PNPM . Either property entails PMPN = PM∩N .

(ii) The sum PM + PN is an orthogonal projection iff PM and PN reciprocally annihilate, i.e.

PMPN = PNPM = 0, or equivalently M ⊥ N . Any of these properties entails PM+PN = PM⊕N .

(iii) M ⊂ N iff either PMPN = PM , or PNPM = PM , or ‖PMx‖ ≤ ‖PNx‖ for any x ∈ H.

[Ex]

12.6 Overview of projections

So far we have seen three notions of linear projection:

(i) in linear spaces any idempotent linear operator from the space to itself is called a pro-

jection. The range is a linear subspace. In this setup of course there is no distance to be

minimized.

(ii) in Banach spaces one introduces continuous projections (or just projections). Their

range is a (closed) subspace.

(iii) in Hilbert spaces self-adjoint continuous projections are called orthogonal projections

(or just projections). This class coincides with that of nonexpansive projections.

In Hilbert spaces one can also deal with orthogonal projections on (nonempty) closed convex

subsets: they map any element of the space to the point of the subset that has minimal distance

from that element. These projections can be expressed via variational inequalities, whereas

projections on closed subspaces are characterized by variational equations.

12.7 Exercises

— Let H be the set of all complex sequences {xn} such that

‖{xn}‖ :=
( m∑
n=1

‖xn‖4
)1/4

+
( m∑
n=1

‖xn‖2
)1/2

< +∞.

(i) Show that this is a norm.

(ii) Is it equivalent to Hilbert norm?

(iii) Does H coincide with any of the known sequence spaces?

— Let {un} be a sequence in a Hilbert space H and u ∈ H be such that un → u weakly and

‖un‖ → ‖u‖. Prove that then un → u.

Hint: Develop the square ‖un − u‖2 ...

— Let K (6= ∅) be a closed convex subset of a reflexive Banach space X.

(i) Show that there exists a (possibly-valued!) projection operator PK (characterized by the

property of minimizing the distance).

(ii) Assuming that PK is single-valued, need PK be nonexpansive?

(iii) Do these statements hold in infinite dimension, too?
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13 The Representation Theorem

13.1 Riesz-Fréchet Theorem

Via orthogonality next we infer that any Hilbert space is isometric isomorphic to its dual.

• Theorem 13.1 (Riesz-Fréchet’s Representation Theorem) Let H be a Hilbert space over the

field K. The operator

Γ : H → H ′ defined by Γv(u) := (u, v) ∀u, v ∈ H (13.1)

is bijective and isometric. H ′ is thus a Hilbert space, and is isometrically isomorphic to H.

If K = R the mapping v → Γv is linear, whereas if K = C it is antilinear, i.e.,

Γλ1v1+λ2v2 = λ̄1Γv1 + λ̄2Γv2 ∀λ1, λ2 ∈ C, ∀v1, v2 ∈ H. (13.2)

The inverse operator Γ−1 : H ′ → H is often called the Riesz isomorphism.

Proof. For any v ∈ H, the Cauchy-Schwarz inequality (11.21) yields

|Γv(u)| = |(u, v)| ≤ ‖u‖‖v‖ ∀u ∈ H;

thus Γv ∈ H ′ and ‖Γv‖H′ ≤ ‖v‖. As ‖v‖2 = Γv(v) ≤ ‖Γv‖H′ ‖v‖, the opposite inequality is also

fulfilled. Thus Γ is an isometry.

Let us now fix any f ∈ H ′ and show that f = Γv for some v ∈ H. Obviously, 0 = Γ0. Let

us assume that f 6= 0, and choose any z ∈ [f−1(0)]⊥ such that f(z) = 1. For any u ∈ H,

w := u − f(u)z ∈ f−1(0). Hence (w, z) = 0, i.e. (u, z) − f(u)‖z‖2 = 0. Setting v = z/‖z‖2 we

then get (u, v) = f(u). Thus Rv = f and therefore Rv is onto H ′.

The antilinearity of Γ follows from the antilinearity of the inner product w.r.t. to the second

argument. 2

Remarks. (i) This representation theorem entails that L2(A)′ can be identified with L2(A),

see Theorem 0.7.

(ii) For any u ∈ H one may also consider the functional Γ̃u : H → K : v 7→ (u, v). If K = R,

Γ̃u = Γu and is linear. On the other hand if K = C, for any u ∈ H, Γ̃u is continuous and

antilinear:

Γ̃u(λ1v1 + λ2v2) = λ̄1Γ̃u(v1) + λ̄2Γ̃u(v2) ∀λ1, λ2 ∈ C, ∀u, v1, v2 ∈ H.

Thus the map u 7→ Γ̃u is linear, but it maps H to its antidual H̃, namely the linear space of

continuous and antilinear functionals H → C. 2

Proposition 13.2 Any Hilbert space H is reflexive.

Proof. We shall show that the canonical embedding J : H → H ′′ is surjective. Let us first

define the antilinear operator Γ : H → H ′ as in (13.1). For any u′′ ∈ H ′′, the functional

v 7→ f(v) := 〈u′′,Γv〉 is an element of H ′. By Theorem 13.1, then f = Γu for some u ∈ H.

Denoting by J the canonical isomorphism H → H ′′, we then have

〈u′′,Γv〉 = f(v) = Γu(v) = (v, u) = (u, v) = Γv(u) = 〈J(u),Γv〉 ∀v ∈ H.

As Γ is surjective, Γv is any element of H ′. We thus have 〈u′′, g〉 = 〈J(u), g〉 for any g ∈ H ′,
that is, u′′ = J(u). As u′′ was arbitrary, we conclude that J is surjective. 2

13.2 The Lax-Milgram Theorem
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• Theorem 13.3 (Lax-Milgram) Let H be a Hilbert space, and L ∈ L(H) be such that, for

some α > 0,

(Lv, v) ≥ α‖v‖2 ∀v ∈ H (coerciveness). (13.3)

Then L is bijective and L−1 ∈ L(H); more precisely,

‖L−1w‖ ≤ α−1‖w‖ ∀w ∈ H. (13.4)

Proof. By the continuity and the coerciveness of L,

α‖v‖2 ≤ (Lv, v) ≤ ‖Lv‖ ‖v‖ whence α‖v‖ ≤ ‖Lv‖ ∀v ∈ H.

This entails that:

(i) L is injective;

(ii) if L−1 : L(H)→ H exists, then ‖L−1w‖ ≤ α−1‖w‖ for any w ∈ L(H);

(iii) Any sequence {vn} in H is Cauchy if so is {Lvn}.
By the inverse mapping Theorem 5.8, it then suffices to show that L is surjective.

By (iii) and by the continuity of L, L(H) is closed. For any v ∈ L(H)⊥ we have α‖v‖2 ≤
(Lv, v) = 0, whence v = 0; thus L(H)⊥ = {0}. As H = L(H) ⊕ L(H)⊥ = L(H) ⊕ {0}, we

conclude that L(H) = H. 2

Remarks. (i) If L is self-adjoint, that is, if (Lu, v) = (u, Lv) for any u, v ∈ H, then the thesis

of the Lax-Milgram theorem directly follows from the Riesz-Fréchet representation Theorem 13.1.

We check this for the case of a real Hilbert space, for the sake of simplicity. In that case,

(u, v) 7→ ((u, v)) := (u, Lv) defines an inner product over H. Since L is continuous and coercive,

the corresponding norm is equivalent to the original one, hence the dual H ′ is the same for either

choice of inner product.

To prove that L is surjective, let b ∈ H define f ∈ H ′ by setting f(v) = (v, b) for any v. By

the representation theorem, there exists u ∈ H with f(v) = ((v, u)) = (v, Lu) for any v ∈ H;

thus Lu = b and consequently L is surjective. Above we already derived the injectivity L and

(13.4) from (13.3).

(ii) The Lax-Milgram Theorem may be compared with the Closed Range Theorem 5.9. 2

The Lax-Milgram theorem is widely used to derive existence and uniqueness results for linear

boundary value problems, written as an equation Au = b between suitably chosen function

spaces.

13.3 Exercises

1. = Prove the following extension of the classical Pythagoras’s theorem to Hilbert spaces.

For any finite orthogonal system {un}n=1,...,m of an inner-product space H,∥∥∥∥ m∑
n=1

un

∥∥∥∥2

=
m∑
n=1

‖un‖2.

For m = 2 (and only in this case), conversely this formula holds only if u1 and u2 are
orthogonal.

2. Prove directly the Hahn-Banach Theorem I.4.1 in a Hilbert space, assuming that M is a
closed subspace, without using the Zorn Lemma (neither any equivalent statement).
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3. Let M be a closed subspace of a Hilbert space H, X be a Banach space, and L : M → X
be a linear and continuous operator. Prove that L has a linear and continuous extension
to the whole H.

This may be regarded as a sort of Hahn-Banach-type Theorem for operators. Notice that
this property may fail if H is just a Banach space. Consider for instance M = X = c0,
H = `∞ and L equal to the identity operator.

4. Let M be a linear subspace of a Hilbert space H. Prove that M is dense in H iff M⊥ = {0}.

5. Under which assumptions is M⊥ = [(M⊥)⊥]⊥ in a Hilbert space?

6. Let H be the linear space of functions f : R→ R such that {x ∈ R : f(x) 6= 0} is at most
countable. Is this a Hilbert space w.r.t. the inner product (f, g) :=

∑
x∈R f(x)g(x) ?

7. * Prove that, if H is a Hilbert space and L ∈ L(H) is symmetric, that is,

(Lu, v) = (u, Lv)
(

= (Lv, u)
)

∀u, v ∈ H,

then the thesis of the Lax-Milgram theorem follows from the Riesz-Fréchet representation
Theorem 13.1.

Hint: The mapping (u, v) 7→ ((u, v)) := (u, Lv) defines an inner product over H. Notice
that the dual H ′ is the same for the original and this newly defined inner product.

Since L is continuous and coercive, the corresponding norm is equivalent to the original
one, hence the dual H ′ is the same for either choice of inner product.

To prove that L is surjective, let b ∈ H define f ∈ H ′ be setting f(v) = (v, b) for any v.
By the representation theorem, there exists u ∈ H with f(v) = ((v, u)) = (v, Lu) for any
v ∈ H; thus Lu = b and consequently L is surjective. That L is injective, and that (13.4)
holds, follows as above by virtue of the inequality α‖v‖ ≤ ‖Lv‖, valid for any v ∈ H.

14 Orthonormal Systems and Hilbert Bases

14.1 Orthonormal Systems

A subset A 6= ∅ of an inner-product space H is called an orthogonal system iff (u, v) = 0

for any two distinct elements u, v ∈ A; A is said to be orthonormal iff moreover ‖u‖ = 1 for

any u ∈ A. (The origin 0 may thus belong to orthogonal but not to orthonormal systems.)

Proposition 14.1 (Gram-Schmidt Orthonormalization)

Let {un} be an either finite or countable linearly independent subset of an inner-product space

H, and set v1 = u1/‖u1‖. For any integer n > 1, by induction let us assume that v1, ..., vn are

known, and set

wn+1 := un+1 −
n∑
j=1

(un+1, vj)vj ,

vn+1 := wn+1/‖wn+1‖ ∀n ≥ 1.

(14.1)

This entails that {vn} is an orthonormal subset of H, and

span{v1, ..., vn} = span{u1, ..., un} ∀n.
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Proof. For any n ∈ N, let us denote by Vn the span of {u1, ..., un}, and define wn+1 and vn+1

as above. By induction hypothesis, let us assume that Vn coincides with the span of {v1, ..., vn}.
Notice that wn+1 6= 0 as un+1 6∈ Vn. For any n, by construction vn+1 is of unit norm and is

orthogonal to v1, ..., vn. The sequence {un} is thus orthonormal, and Vn+1 coincides with the

span of {v1, ..., vn+1}. 2

In passing, notice that
∑n

j=1(un+1, vj)vj coincides with the projection of un+1 on the span Vn
of {v1, ..., vn}.

For instance, the Gram-Schmidt procedure transforms the set of monomials {fn(x) := xn :

n ∈ N ∪ {0}} to an orthonormal system of L2(−1, 1), more specifically the classical family of

Legendre polynomials:{
Pn(x) = (2nn!)−1(d/dx)n[(x2 − 1)n], ∀x ∈ [−1, 1]

}
. []

The next result illustrates the relevance of orthogonal sequences in Hilbert spaces. 44

Theorem 14.2 For any orthogonal sequence {un}n∈N in a Hilbert space H, the following prop-

erties are mutually equivalent:∑∞
n=1 un converges unconditionally (in H), (14.2)∑∞

n=1 un converges weakly unconditionally (in H), (14.3)∑∞
n=1 ‖un‖2 converges (in R). (14.4)

Proof. (14.2) ⇒ (14.3): this is obvious.

Let us show that (14.3) ⇒ (14.4). By (14.3) the sequence of the partial sums {
∑m

n=1 un}m∈N
is bounded. By the orthogonality of the sequence {un}, then

m∑
n=1

‖un‖2 =

∥∥∥∥∥
m∑
n=1

un

∥∥∥∥∥
2

≤ Constant (independent of m).

This yields (14.4).

Let us next prove that (14.4)⇒ (14.2). By (14.4) the sequence of partial sums {
∑m

n=1 ‖un‖2}m∈N
is Cauchy in R, and by the orthogonality of {un}∥∥∥∥∥ ∑̀

n=m

un

∥∥∥∥∥
2

=
∑̀
n=m

‖un‖2 ∀`,m ∈ N,m < `.

Hence the sequence of partial sums {
∑m

n=1 un}m∈N is Cauchy in H. By the completeness of H,

the series
∑∞

n=1 un then converges. As the convergence in (14.4) is unconditional, the same then

holds for
∑∞

n=1 un. 2

14.2 Bessel inequality

For any (nonempty) subset A of a normed space X, we denote by span (A) the closure of the

set of finite linear combinations of elements of A. For any Hilbert space H,

span (A) = (A⊥)⊥ ∀A ⊂ H.[Ex] (14.5)

The next statement rests upon finite-dimensional geometry, and is essentially a reformulation

of the classical Pythagoras theorem in Hilbert spaces.

44 In chapter XXX we called unconditionally convergent a series
∑∞
n=1 un in a Banach space iff

∑∞
n=1 un =∑∞

n=1 uπ(n) for all permutations π : N→ N.
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Lemma 14.3 Let {un}1≤n≤m be a finite orthonormal subset of an inner-product space H. Then

for any u ∈ H∥∥u−∑m
n=1(u, un)un

∥∥2
= ‖u‖2 −

∑m
n=1 |(u, un)|2 = ‖u‖2 −

∥∥∑m
n=1(u, un)un

∥∥2
. (14.6)

Moreover
∑m

n=1(u, un)un coincides with the orthogonal projection of u on span ({un}1≤n≤m).

Proof. Let us fix any u ∈ H, and set αn := (u, un) for any n ∈ N. By the orthonormality of

{un}, for any m ∈ N we have∥∥∑m
n=1 αnun

∥∥2
=
∑m

n=1 ‖αnun‖2 =
∑m

n=1 |αn|2 ∀` > m, (14.7)(
u,
∑m

n=1 αnun
)

=
∑m

n=1 ‖αnun‖2 =
∑m

n=1 |αn|2. (14.8)

Hence ∥∥u−∑m
n=1 αnun

∥∥2
= ‖u‖2 − 2Re

(
u,
∑m

n=1 αnun
)

+
∥∥∑m

n=1 αnun
∥∥2

(14.7),(14.8)
= ‖u‖2 − 2

∑m
n=1 |αn|2 +

∑m
n=1 |αn|2

= ‖u‖2 −
∑m

n=1 |αn|2 ∀m ∈ N.

(14.9)

For any m, let us define the partial sum sm =
∑m

n=1 αnun, and notice that

‖s` − sm‖2 =
∥∥∑`

n=m+1 αnun
∥∥2

=
∑`

n=m+1 |αn|2 ∀`,m ∈ N,m < `; (14.10)

by the completeness of H, ũ :=
∑∞

n=1 αnun then converges.

(14.7) and (14.9) also yield∥∥u−∑m
n=1 αnun

∥∥2
= ‖u‖2 −

∥∥∑m
n=1 αnun

∥∥2 ∀m ∈ N . (14.11)

A straightforward calculation shows that (u− ũ, ũ) = 0, and this yields the final statement. 2

Next we extend Lemma 14.3 to infinite orthonormal subsets in Hilbert spaces.

Proposition 14.4 Let {un}n∈N be an orthonormal sequence in a Hilbert space H. Then for

any u ∈ H, the series
∑∞

n=1(u, un)un converges and∥∥∥∥∥u−
∞∑
n=1

(u, un)un

∥∥∥∥∥
2

= ‖u‖2 −
∞∑
n=1

|(u, un)|2 = ‖u‖2 −

∥∥∥∥∥
∞∑
n=1

(u, un)un

∥∥∥∥∥
2

. (14.12)

Hence

‖u‖2 ≥
∞∑
n=1

|(u, un)|2 ∀u ∈ H(Bessel inequality). (14.13)

Moreover
∑∞

n=1(u, un)un coincides with the orthogonal projection of u on the subspace span ({un}n∈N).

Proof. By the completeness of H, the series
∑∞

n=1(u, un)un converges. Passing to the limit as

m→∞ in (14.6), we then get (14.12). 2

14.3 Hilbert bases

An orthonormal subset A of a Hilbert space H is called a Hilbert basis (or an orthonormal

basis) iff H = span (A). In this case A cannot be extended to any larger orthonormal subset of

H; one then says that the orthonormal subset A is complete. 45 Notice that a Hilbert basis

may be finite, countable or also uncountable.

45 This should not be confused with the topological completeness of the space.
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Theorem 14.5 Any Hilbert space has a Hilbert basis.

Outline of the Proof. The argument can be based on the Zorn lemma or also the Hausdorff’s

maximal chain principle. 46 [Ex] 2

Proposition 14.6 Let J be an index set and A := {uj : j ∈ J} be an orthonormal subset of a

Hilbert space H. The following properties are mutually equivalent:

(i) A is a Hilbert basis;

(ii) A is maximal (w.r.t. the ordering by inclusion) among orthonormal subsets;

(iii) 0 is the only element of H orthogonal to A. [Ex]

Proposition 14.7 Let J be an index set and A := {uj : j ∈ J} be a Hilbert basis of a Hilbert

space H. For any u ∈ H, u =
∑

j∈J(u, uj)uj unconditionally, and Ju := {j ∈ J : (u, uj) 6= 0} is

at most countable. 47 []

14.4 Fourier coefficients

We saw that, whenever A := {uj : j ∈ J} is an orthonormal subset of a Hilbert space H, u =∑
j∈J(u, uj)uj unconditionally. The (u, uj)s are called the (generalized) Fourier coefficients of

u w.r.t. the orthonormal subset {uj}. This denomination arose from Fourier analysis of periodic

functions of a real variable, that we shall briefly illustrate ahead.

Next we provide more precise information about these coefficients.

Theorem 14.8 If {uj}j∈J is a Hilbert basis of a Hilbert space H, then

u =
∑
j∈J

(u, uj)uj ∀u ∈ H (Fourier expansion); (14.14)

(u, v) =
∑
j∈J

(u, uj)(v, uj) ∀u, v ∈ H (Parseval identity); (14.15)

‖u‖2 =
∑
j∈J
|(u, uj)|2 ∀u ∈ H (Parseval formula). (14.16)

If J is infinite countable, H is thus isometrically isomorphic to `2.

Proof. For any u ∈ H, by the Bessel inequality (14.12),
∑

`∈L |(u, u`)|2 < +∞ for any finite

set L ⊂ J . As the set Ju := {j ∈ J : (u, uj) 6= 0} is at most countable, (14.14) then follows from

the final part of Proposition 14.4.

For any finite set L ⊂ J , we have(∑
j∈J

(u, uj)uj ,
∑
`∈L

(v, u`)u`

)
=
∑
j∈J

(u, uj)(v, uj) ∀u, v ∈ H;

(14.14) thus yields (14.15). Selecting v = u in (14.15) we get (14.16). 2

Remark. We just saw that if a Hilbert space has a countable Hilbert basis (equivalently,

if it is separable) then it is isometrically isomorphic to `2. We can then rephrase Megginson’s

remark that we stated after Proposition 8.6:

46This states that in any partially ordered set, every totally ordered subset is contained in a maximal totally
ordered subset. This is equivalent to the Zorn lemma as well as to the axiom of choice.

47 ... Refer to infinite sums in the Banach chapter.
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“In a sense the entire theory of normed spaces is contained in the theory of `2. This by no

means trivializes the theory of normed spaces, but rather serves to point out the richness of the

theory of the spaces `2.”

14.5 Hilbert dimension

* Proposition 14.9 Any two Hilbert bases of the same Hilbert space have the same cardinality

(this is called the Hilbert dimension).

Proof. If one of the two bases is finite, the other one is also finite, and the result is straight-

forward. Let us then assume that {uj}j∈J and {v`}`∈L are two infinite bases of a Hilbert space.

For any ` ∈ L, as we saw the set J` := {j ∈ J : (v`, uj) 6= 0} is at most countable.

Let us denote by card(A) the cardinality of any set A. Any j ∈ J is element of some J`, as

{v`}`∈L is a Hilbert basis; hence card (J) ≤ card (
⋃
`∈L J`). Moreover card (

⋃
`∈L J`) ≤ card (L),

as each J` is at most countable and card (L) is infinite. Thus card (J) ≤ card (L). By the

symmetry of the argument, we infer that this is an equality. 2

A countable Hilbert basis is a Schauder basis as well, and the space is then separable. Con-

versely, any separable Hilbert space has a countable Hilbert basis. [Ex] (On the other hand, as

we already remarked, a separable Banach spaces may not have any Schauder basis.)

14.6 Fourier series in L2

For any n ∈ N, let us set (en)n := 1 and (en)m := 0 if m 6= n. The sequence of unit vectors

{en} is the canonical Hilbert basis of `2.

Another example, which is at the basis of the terminology we just introduced, is provided by

reformulating the theory of Fourier series in the setup of Hilbert spaces.

Proposition 14.10 Let us set

uk(x) = eikx/
√

2π for a.e. x ∈ ]− π, π[,∀k ∈ Z. (14.17)

The family {uk}k∈Z is a Hilbert basis of L2(−π, π).

Proof. It is straightforward to check that {uk}k∈Z is an orthonormal system in H. By an

obvious bijection between Z and N, this orthonormal system indexed by k ∈ Z can be trans-

formed to one indexed by n ∈ N. By the classical Stone-Weierstrass theorem, {uk}k∈Z is dense

in C0([−π, π]). [] By the density of the canonic injection C0([−π, π]) → L2(−π, π), this family

is also dense in the latter space, too. 2

The following formulas define the transform L2(−π, π)→ `2 : f 7→ {f̂k}k∈N and its inverse:

f̂k = (f, uk) ∀k ∈ Z, f(x) =
∑
k∈Z

f̂kuk(x) for a.e. x ∈ ]−π, π[, (14.18)

the convergence of the latter series being understood in the sense of L2(−π, π). More explicitly,
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these two formulas read 48

f̂k =
1√
2π

∫ π

−π
f(x)e−ikx dx ∀k ∈ Z,

lim
m→∞

∫ π

−π

∣∣∣f(x)−
k=m∑
k=−m

f̂kuk(x)
∣∣∣2dx = 0.

(14.19)

The operator L2(−π, π)→ `2 : f 7→ {f̂k} is also called the Fourier series transform in L2.

14.7 Overview of bases

So far we have introduced three types of bases:

(i) Hamel bases for linear spaces: they exist for any space;

(ii) Schauder bases for separable Banach spaces: for some spaces they do not exist;

(iii) Hilbert bases for Hilbert spaces: they exist for any space.

A Schauder basis of a separable Hilbert space is a Hilbert basis iff it is orthonormal. In this

case the Schauder basis is unconditional. [Ex]

14.8 Overview of Hilbert spaces

We introduced the axioms of the inner product, and derived some basic properties, in particular

the Cauchy-Schwarz inequality and the parallelogram identity. By means of the Cauchy-Schwarz

inequality, we showed that a norm can be associated with any inner product. Thus any Hilbert

space is also a Banach space. Conversely, an inner product is associated with any norm which

fulfills the parallelogram identity.

By means of the inner product, we defined the concepts of orthogonality and of orthogonal pro-

jection. The completeness entails the existence of the orthogonal projection on any (nonempty)

closed convex subset, in particular on closed subspaces. Orthogonal projections are character-

ized as idempotent, self-adjoint, linear operators of the space to itself. Orthogonal projections

also provide a surjective isometric isomorphism between the antidual of any Hilbert space and

the space itself (Riesz-Fréchet representation theorem).

We then dealt with orthonormal systems of a Hilbert space and derived the Bessel inequality.

We defined Hilbert bases, and saw that any Hilbert space is endowed with such a basis, and thus

has a Hilbert dimension. Finally, we derived the Fourier expansion of any element of a Hilbert

space w.r.t. to a Hilbert basis.

14.9 Exercises

1. = Prove the following extension of the classical Pythagoras’s theorem to Hilbert spaces.

For any finite orthogonal system {un}n=1,...,m of an inner-product space H,∥∥∥∥ m∑
n=1

un

∥∥∥∥2

=

m∑
n=1

‖un‖2.

For m = 2 (and only in this case), conversely this formula holds only if u1 and u2 are
orthogonal.

48 A priori the L2-convergence entails the a.e. convergence just for a suitable subsequence. In 1966 Carleson
was able to prove the convergence of the whole sequence: a highly nontrivial result! On this basis in 2006 he was
awarded the prestigious Abel prize.
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2. Prove directly the Hahn-Banach Theorem I.4.1 in a Hilbert space, assuming that M is a
closed subspace, without using the Zorn Lemma (neither any equivalent statement).

3. Let M be a closed subspace of a Hilbert space H, X be a Banach space, and L : M → X
be a linear and continuous operator. Prove that L has a linear and continuous extension
to the whole H.

This may be regarded as a sort of Hahn-Banach-type Theorem for operators. Notice that
this property may fail if H is just a Banach space. Consider for instance M = X = c0,
H = `∞ and L equal to the identity operator.

4. Let M be a linear subspace of a Hilbert space H. Prove that M is dense in H iff M⊥ = {0}.

5. Under which assumptions is M⊥ = [(M⊥)⊥]⊥ in a Hilbert space?

6. Let H be the linear space of functions f : R→ R such that {x ∈ R : f(x) 6= 0} is at most
countable. Is this a Hilbert space w.r.t. the inner product (f, g) :=

∑
x∈R f(x)g(x) ?

7. * Prove that, if H is a Hilbert space and L ∈ L(H) is symmetric, that is,

(Lu, v) = (u, Lv)
(

= (Lv, u)
)

∀u, v ∈ H,

then the thesis of the Lax-Milgram theorem follows from the Riesz-Fréchet representation
Theorem 13.1.

Hint: The mapping (u, v) 7→ ((u, v)) := (u, Lv) defines an inner product over H. Notice
that the dual H ′ is the same for the original and this newly defined inner product.

Since L is continuous and coercive, the corresponding norm is equivalent to the original
one, hence the dual H ′ is the same for either choice of inner product.

To prove that L is surjective, let b ∈ H define f ∈ H ′ be setting f(v) = (v, b) for any v.
By the representation theorem, there exists u ∈ H with f(v) = ((v, u)) = (v, Lu) for any
v ∈ H; thus Lu = b and consequently L is surjective. That L is injective, and that (13.4)
holds, follows as above by virtue of the inequality α‖v‖ ≤ ‖Lv‖, valid for any v ∈ H.
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Chapter III — Operators

Contents: 1. Bounded linear operators. 2. Compact operators. 3. The Riesz and Fredholm

theory. 4. Introduction to spectral theory.

15 Bounded linear operators

15.1 Examples

(i) For any matrix A ∈ KM,N , the associated linear mapping L : KN → KM

(Lu)j =

N∑
k=1

ajkuk, 1 ≤ j ≤M

defines a bounded linear operator.

(ii) In some cases an infinite matrix A = (ajk) defines a bounded linear mapping between

sequence spaces by the formula

(Lu)j =
∞∑
k=1

ajkuk, 1 ≤ j <∞. (15.1)

For example, the estimate

∞∑
j=1

( ∞∑
k=1

|ajkuk|

)2

≤

 ∞∑
j,k=1

|ajk|2
 ∞∑

k=1

|uk|2 [Ex] (15.2)

entails that L ∈ L(`2), with ‖L‖2 ≤
∑

j,k |ajk|2, if the latter sum is finite. This condition,

however, is not necessary: e.g., it is not satisfied by the unit matrix. Indeed, in the diagonal

case (Lu)k = αkuk, we have L ∈ L(`2) iff ‖α‖∞ < ∞. One may ask for conditions, in terms of

the elements of A, which are necessary as well as sufficient in order that (15.1) defines a bounded

linear mapping from `p to `q. However, no “useful” conditions are known for 1 < p, q <∞.

(iii) The right (or forward) shift Sr and the left (or backward) shift Sl

(Sru)k = uk−1, (S`u)k = uk+1, (15.3)

are most naturally defined on bilateral sequences {uk}k∈Z; obviously they are isometries on

`pK(Z) for any p ∈ [1,∞]. For unilateral sequences u = (u1, u2, . . . ) one sets

Sr(u1, u2, . . . ) = (0, u1, u2, . . . ), S`(u1, u2, . . . ) = (u2, u3, . . . ).

In this case Sr and S` still belong to L(X) for X = `p (:= `pK(N), but they are no longer

isomorphisms.

(iv) For any p ∈ [1,∞], if a is a bounded measurable function on a measure space (A,A, µ),

then the multiplication operator define by

(Lu)(x) = a(x)u(x) for a.e. x ∈ A

is an operator L ∈ L(Lp(A)) and ‖L‖ = ‖a‖∞. Similarly, if A is a compact metric space and

a ∈ C0(A), then L ∈ L(Lp(A)) and ‖L‖ = maxA |a|.
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(v) Let (A,A, µ) and (B,B, ν) be two σ-finite measure spaces, k ∈ L2(A×B), and set

(Lu)(x) =

∫
B
k(x, y)u(y) dµ(y) for a.e. x ∈ A,∀u ∈ L2(B). (15.4)

By the theorems of Tonelli and Fubini and the Hölder inequality, Lu is an a.e. well-defined and

measurable function, and, by the Cauchy-Schwarz inequality,∫
A

∣∣∣∣∫
B
k(x, y)u(y) dµ(y)

∣∣∣∣2 dν(x) ≤
∫
A

∫
B
|k(x, y)|2 dµ(y) dν(x) ·

∫
B
|u(y)|2 dµ(y).

L is thus a bounded linear mapping L2(B)→ L2(A), and

‖L‖ ≤
∫∫

A×B
|k(x, y)|2 dµ(y) dν(x).

The function k is called the kernel of the integral operator L.

If A = B = [a, b] and µ = ν is the Lebesgue measure, then the operators

(L1u)(x) =

∫ b

a
k(x, y)u(y) dy, (L2u)(x) =

∫ x

a
k(x, y)u(y) dy ∀x ∈ [a, b]

are respectively called Fredholm and Volterra integral operators.

15.2 Adjoints in Hilbert spaces

Let H1, H2 be Hilbert spaces over K (= R or C). For any L ∈ L(H1;H2), the (Hilbert)

adjoint L∗ ∈ L(H2;H1) is defined by

(L∗u, v)H1 = (u, Lv)H2 , ∀u ∈ H2 ∀ v ∈ H1 . (15.5)

We state several properties that are easily derived via the procedure that we used for Banach

spaces. We leave it to the reader to verify these statements.

L∗ is well defined and

(L1 + L2)∗ = L∗1 + L∗2, (αL)∗ = αL∗,

(L2 ◦ L1)∗ = L∗1 ◦ L∗2, L∗∗ = L, ‖L∗‖ = ‖L‖,
(15.6)

for all operators L,L1, L2 with appropriate domain and range, and all scalars α.

Let us define the canonical isomorphism Γi : Hi → H ′i (i = 1, 2) as in (13.1). The Hilbert

adjoint L∗ : H2 → H1 is related to the adjoint L′ : H ′2 → H ′1 by

L∗ = Γ−1
1 L′Γ2, L′ = Γ1L

∗Γ−1
2 . (15.7)

In the complex case some formulae for L∗ may slightly differ from those for L′, since (αL)′ =

αL′ but (αL)∗ = αL∗ for scalars α ∈ C.

An operator L ∈ L(H) is invertible iff L∗ is invertible, and (L∗)−1 = (L−1)∗ in that case. A

computation analogous to (10.3) shows that ‖L∗‖ = ‖L‖. Moreover,

‖L∗L‖ = ‖L‖2 ∀L ∈ L(H). (15.8)

Indeed, the inequality ‖L∗L‖ ≤ ‖L‖2 is obvious. The converse inequality follows from the

estimate

‖Lu‖2 = (Lu,Lu) = (u, L∗Lu) ≤ ‖u‖.

15.3 Exercises
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1. Let X,Y be Banach spaces and T ∈ L(X,Y ).

(i) Is it true that the range of T is dense iff T ∗ is injective?
* (ii) Is it true that T is surjective iff T ∗ is injective?

2. * Let X,Y be Banach spaces and T ∈ L(X,Y ). Show that T is injective iff there exists
C > 0 such that ‖Tu‖ ≥ C‖u‖ for any u ∈ X.

16 Compact Operators

Throughout this section X and Y will denote Banach spaces over K.

A linear and continuous operator K : X → Y is called compact (or completely continuous)

iff it maps any bounded subset ofX to a relatively compact subset of Y , or equivalently iffK(BX)

(the image of the unit ball) is relatively compact in Y . We shall denote the set of all compact

operators by K(X;Y ), or K(X) if X = Y . It is easy to see that K : X → Y is compact iff for

every bounded sequence {un} in X, the sequence {Kun} has a convergent subsequence (in Y ).

This entails that any compact operator maps weakly (or weakly star) convergent sequences to

convergent sequences.

Proposition 16.1 The composition M ◦ L of two linear continuous operators is compact if

either M or L is compact. (The converse fails.)

Proof. This holds since continuous operators map bounded sets to bounded sets, and relatively

compact sets to relatively compact sets. 2

Proposition 16.2 K(X;Y ) is a closed subspace of the Banach space L(X;Y ).

Proof. One readily checks that K(X;Y ) is a linear subspace. Thus it suffices to prove that

the uniform limit of compact operators is a compact operator.

Let L ∈ L(X;Y ) and {Km} be a sequence in K(X;Y ) such that Km → L. For any m, the

image Km(BX) of the unit ball is relatively compact, hence totally bounded. 49 For any ε > 0

and any m, Km(BX) can thus be covered by the union of finitely many balls of radius ε/2. As

‖Km − L‖L(X;Y ) ≤ ε/2 for m large enough, L(BX) can then be covered by the union of finitely

many balls of radius ε. This means that L(BX) is totally bounded. Since Y is complete, this

set is thus relatively compact. 2

Theorem 16.3 (Schauder) An operator L ∈ L(X;Y ) is compact iff its adjoint L′ is compact.

(If X,Y are Hilbert spaces, then the same holds for the Hilbert adjoint L∗.)

* Proof. If L is compact, then A = L(BX) is compact. Let {gn} be a sequence in Y ′ with

‖gn‖ ≤ 1. Since |gn(v)− gn(w)| ≤ ‖v−w‖ for all v, w ∈ A, the sequence {gn|A} is bounded and

equicontinuous in C0(A). By the Ascoli-Arzelà theorem, some subsequence {gnk} then converges

uniformly on A, and thus is Cauchy w.r.t. the uniform norm. As

‖L′gnk − L
′gnj‖X′= sup

x∈BX
|〈gnk − gnj , Lx〉| ≤ ‖gnk − gnj‖C0(A)‖L‖L(X,Y ) ∀k, j,

the subsequence {L′gnk} is Cauchy and hence convergent in X ′. Thus L′ is compact.

49 By definition, a subset of a metric space is totally bounded iff for any ε > 0 it can be covered by a union of
finitely many balls of radius ε.
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If conversely L′ is compact, then so is L∗∗ : X ′′ → Y ′′. Since JY (L(BX)) = L∗∗(JX(BX)), the

set JY (L(BX)) is relatively compact in Y ′′. As JY is an isometry we conclude that L(BX) is

relatively compact in Y . 2

16.1 Examples

(i) If either X or Y has finite dimension, then every L ∈ L(X;Y ) is compact.

(ii) The shift operators Sr and S` are not compact on `p, since S` ◦ Sr = I is not compact.

(iii) Let A be a Euclidean set with nonempty interior and X = C0
b (A). The multiplication

operator

(Lau)(x) = a(x)u(x) for a given a ∈ C0
b (A),

is compact only if a ≡ 0 identically in A. [Ex] An analogous result holds for X = Lp(A).

(iv) Depending on the properties of the kernel k, the integral operator

(Lu)(x) =

∫
A
k(x, y)u(y) dν(y) (16.1)

not only belongs to L(X;Y ) for suitable function spaces X and Y , but actually is compact.

E.g., let X = L2(A1;µ), Y = L2(A2; ν) for two σ-finite measures µ and ν, and let k ∈ L2(A1 ×
A2;µ⊗ ν).

If k has the product form k(x, y) = g(x)h(y) with g ∈ L2(A2) and h ∈ L2(A1), then

(Lu)(x) = g(x)

∫
A1

h(y)u(y) dν(y) for µ-a.e. x ∈ A2.

Thus R(L) equals the one-dimensional subspace spanned by g; in this case L is thus compact.

For the general case, it turns out that for any ε > 0 there is a kε ∈ L2(A1 × A2), which is a

finite linear combination of kernels in product form (e.g., characteristic functions of Cartesian

products of measurable sets, like intervals if A1, A1 ⊂ R) and satisfies ‖k − kε‖L2(A1×A2) ≤ ε.

[Ex] Let us denote by Lε the integral operator associated to kε. The range R(Lε) has finite

dimension, and satisfies ‖L− Lε‖ ≤ ‖k − kε‖L2(A1×A2) ≤ ε. As K(X;Y ) is a closed subspace of

L(X;Y ), L is thus compact.

(v) Here is another example of operator of the form (16.1). Let us assume that X = C0(A1)

and Y = C0(A2), with A1 and A2 compact subsets of RN and RM (resp.) equipped with the

Lebesgue measure, and let k ∈ C0(A1×A2). Let us denote by B1 the unit ball of C0(A1). Since

k is uniformly continuous, L(B1) is not only bounded but also equicontinuous, hence relatively

compact in C0(A2) by the Ascoli-Arzelà theorem; so L is compact in this case, too.

16.2 Exercises

1. Let X,Y be Banach spaces, and let a linear operator L : X → Y map the unit ball BX to
a relatively compact subset of Y . Is then L continuous?

2. Let us fix any f ∈ C0
b (R2) and set [T (v)](x) =

∫ x
0 f(x, y)v(y) dy for any x.

(i) Is T a bounded operator C0([0, 1])→ C1([0, 1])?
(ii) Is T a compact operator C0([0, 1])→ C1([0, 1])?
(iii) Is T a compact operator C0([0, 1])→ C0([0, 1])?
(iv) Is T a bounded operator C0

b (R)→ C0
b (R)?
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3. Let us fix any k ∈ C0
b (R2) and set

[T (v)](x) := x−1
∫ x

0 k(x, y)v(y) dy for any x 6= 0, [T (v)](0) := k(0, 0)v(0).

(This is the most natural way of defining [T (v)](0): why?)

(i) Is T a bounded operator C0([0, 1])→ C0([0, 1])?
(ii) Is T a compact operator C0([0, 1])→ C1([0, 1])?
(iii) Is T a compact operator C0

b (R)→ C0
b (R)?

4. Let us fix any k ∈ L∞(R2) and set
[T (v)](x) := x−1

∫ x
0 k(x, y)v(y) dy for any x 6= 0, [T (v)](0) := k(0, 0)v(0).

(i) Is T a bounded operator L1(0, 1)→ L1(0, 1)?
* (ii) Is T a compact operator L1(0, 1)→ L1(0, 1)?

5. Let X,Y, Z be Banach spaces and L ∈ L(X,Y ),M ∈ L(Y, Z). Show that if either of these
operators is compact, then their composition ML is also compact.

6. * Let X,Y be Banach spaces and L ∈ L(X,Y ) be compact and bijective.

(i) Give an example.
(ii) In which cases is L−1 compact?

7. Are the left and right shift operators compact in the spaces `p (1 ≤ p ≤ +∞)?

8. Are the inclusions among the spaces `p (1 ≤ p ≤ +∞) compact?

9. Are the inclusions among the spaces Lp(0, 1) (1 ≤ p ≤ +∞) compact?

10. Are the canonical injections Ck+1([0, 1])→ Ck([0, 1]) (k ∈ N) compact?

11. Is the canonical injection C1
b (R)→ C0

b (R) compact?

12. Is the canonical injection C0([0, 1])→ Lp(0, 1) compact for some 1 ≤ p < +∞?

13. Is the canonical injection C0([0, 1])→ L∞(0, 1) compact?

14. Let 1 ≤ p < +∞. Are the canonical injections `p → c0, `p → c, `p → `∞ compact?

15. * Let X,Y be two Banach spaces, L ∈ L(X,Y ), and denote by BX the unit ball of X.

(i) Show that if X is reflexive, then L(BX) is closed.
(ii) Show that if X is reflexive and L is compact, then L(BX) is compact.
(iii) Check that if X = Y = C0([0, 1]) and (Lu)(x) =

∫ x
0 u(t) dt for any x, then L(BX) is

not closed.

(This exercise has been taken from [Brezis] p. 171.)

16. Let X,Y be two Banach spaces, with X of infinite dimension, and let L ∈ L(X,Y ) be
compact. Show that there exists a sequence {un} in X such that ‖un‖ = 1 for any n and
Lun → 0 in Y .

(This exercise has been taken from [Brezis] p. 171.)

17 The Riesz and Fredholm theory

We say that a linear operator L : X → Y has finite rank iff its range R(L) has finite dimension.
50 It is promptly seen that any finite-rank operator acting between Banach spaces is compact.

50 Some vocabulary:
English: range (of a function) ↔ Italian: insieme immagine (di una funzione).
English: rank (of a function) = dimension of its range ↔
Italian: rango (di una funzione) = dimensione del suo insieme immagine.
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A celebrated theorem of F. Riesz extends some known properties of linear operators in Eu-

clidean spaces (thus of matrices) to compact perturbations of linear operators in Banach spaces.

For finite-rank operators between linear spaces this result is quite simple; first we illustrate it

in that case, as a preliminary step towards the Riesz theorem for general compact operators.

Proposition 17.1 If X is a linear space and L : X → X is a linear mapping of finite rank,

then

(i) N (I − L) has finite dimension, (17.1)

(ii) R(I − L) has finite codimension. (17.2)

Proof. Notice that

N (I − L) ⊂ R(L), N (L) ⊂ R(I − L). (17.3)

Thus (17.1) holds. By the second inclusion of (17.3), codim(R(I − L)) ≤ codim(N (L)). By

Proposition 2.7, codim(N (L)) = dim(R(L)). (17.2) then follows. 2

For any linear operator A from a finite dimensional space to itself, the codimension of the kernel

N (A) coincides with the rank of the associated matrix, and this is invariant by transposition.

This entails that N (I − L) and N (I − L′) have the same dimension.

The following classical result extends the above properties to compact perturbations of the

identity (more generally, of any linear isomorphism) in a Banach space X. 51

Theorem 17.2 (Riesz) Let X be a Banach space and K : X → X be a compact operator.

Then:

(i) N (I −K) has finite dimension, (17.4)

(ii) R(I −K) is closed and has finite codimension, (17.5)

(iii) codim (R(I −K)) = dim(N (I −K)) = dim(N (I −K ′)), (17.6)

(iv) N (I −K) = {0} ⇔ R(I −K) = X. (17.7)

We shall not prove this deep result, and just interpret it. Anyway, part of the thesis is easily

checked. The restriction of K to N (I −K) coincides with the identity and is compact; hence

N (I −K) has finite dimension. Part (iv) directly follows from part (iii), see below.

Remark. The Riesz theorem 17.2 applies to all operators of the form A−K, for any linear

isomorphism A : X → X and any compact operator K : X → X. Actually, A−1K is also

compact, so the theorem holds for I−A−1K. Therefore it also holds for A(I−A−1K) = A−K.

2

Corollary 17.3 Let X be a Banach space and K : X → X be a compact operator. The thesis

of the Riesz Theorem 17.2 then holds also for K ′. Moreover,

R(I −K) = 0N (I −K ′), (17.8)

and R(I −K ′) = [N (I −K)]0 if X is reflexive.

51 This is one of the milestones of functional analysis.
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Proof. The first statement follows from the Riesz theorem, since by the Schauder theorem the

operator K ′ : X ′ → X ′ is also compact.

(17.8) stems from the closedness of R(I −K) and from (10.14). The final statement follows

by applying (17.8) to K ′. 2

17.1 The Fredholm Alternative

The statement (17.7) expresses the Fredholm alternative:

I −K is injective iff it is surjective.

This is a basic result of the theory of linear operators in finite-dimensional spaces. By the Riesz

theorem, here we extend to compact perturbations of the identity in infinite-dimensional spaces.

Let us consider an equation of the form

for a prescribed b ∈ Y , find u ∈ X such that u−Ku = b. (17.9)

Corollary 17.4 (Fredholm alternative) Let X be a Banach space and K : X → X be a compact

operator. Then one and only one of the following properties holds (dichotomy):

either (i) u−Ku = b has one and only one solution u ∈ X for each b ∈ X,

or (ii) the homogeneous equation u−Ku = 0 has a nontrivial solution u ∈ X,

and there exists b ∈ X such that u−Ku = b has no solution.

In the second case, the inhomogeneous equation u − Ku = b is solvable iff f(b) = 0 for all

solutions f of the homogeneous adjoint equation (I −K ′)f = 0.

Proof. The dichotomy between the cases (i) and (ii) directly follows from (17.7).

The final statement of this corollary stems from (17.8). 2

Remarks. (i) The two cases of the dichotomy respectively correspond to

(i) N (I −K) = {0} and R(I −K) = X, (17.10)

(ii) 1 ≤ dim (N (I −K)) = codim (R(I −K)) = dim (N (I −K ′)) < +∞. (17.11)

(ii) By (17.4) and the final statement of Corollary 17.4,R(I−K) is the subspace of the elements

of X that fulfill a finite number of linearly independent linear equations; these are often regarded

as the constraints that characterize R(I−K). The equality dim (N (I−K)) = codim (R(I−K))

thus means that the (finite) number of linearly independent solutions u ∈ X of u − Ku = 0

equals the number of linearly independent constraints that define R(I −K).

(iii) The equality dim (N (I−K)) = dim (N (I−K ′)) obviously means that the (finite) number

of linearly independent solutions u ∈ X of u−Ku = 0 equals the number of linearly independent

solutions f ∈ X ′ of f −K ′f = 0.

(iv) We already pointed out that the Riesz Theorem 17.2 applies to all operators of the form

A −K, for any linear isomorphism A : X → X and any compact operator K : X → X. The

same then applies to the Fredholm alternative.

(v) If K is a compact operator is a Hilbert space H, the Riesz Theorem 17.2 may be reformu-

lated as follows, in terms of the Hilbert adjoint K∗:

dim (N (I −K)) = dim (N (I −K∗)) < +∞, (17.12)

H = N (I −K)⊕R(I −K∗).2 (17.13)
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18 Introduction to spectral theory

*18.1 Spectrum of linear and continuous operators

Let X be a Banach space. The resolvent ρ(L) of any L ∈ L(X) is defined as the set of the

λ ∈ K such that λI −L has an inverse in L(X). This holds iff λI −L is bijective, as in this case

(λI − L)−1 exists and is continuous because of the open mapping principle. For any λ ∈ ρ(L),

the resolvent operator RL(λ) := (λI − I)−1 is thus a Banach space isomorphism on X.

The spectrum σ(L) is defined as K \ ρ(L), and can be subdivided as follows. The point

spectrum σp(L) consists of all λ ∈ K such that λI − L is not injective. Thus λ ∈ K belongs

to σp(L) iff Lu = λu for some u 6= 0; in this case λ is called an eigenvalue of L. (Note that

for K = R, the point spectrum includes only the real eigenvalues of L.) For λ ∈ σp(L), the

subspace N (λI − L) is called the eigenspace belonging to λ. Its nonzero elements are named

eigenvectors belonging to λ.

The set σ(L) \ σp(L) is named the essential spectrum, is denoted by σe(L), and is divided

into two parts. The continuous spectrum σc(L) consists of all λ ∈ σ(L) \ σp(L) for which

R(λI −L) is dense in X. The residual spectrum σr(L) is formed by the λ ∈ σ(L) \ σp(L) for

which R(λI − L) is not dense in X. Thus

σ(L) = σp(L) ∪ σe(L) = σp(L) ∪ σc(L) ∪ σr(L), (18.1)

and these unions are disjoint. (Other terminologies are also in use...)

Proposition 18.1 For the adjoint L′ of any L ∈ L(X),

σ(L′) = σ(L), σr(L) ⊂ σp(L′) ⊂ σr(L) ∪ σp(L). (18.2)

Proof. For any λ ∈ K, λI − L′ = (λI − L)′ is invertible iff λI − L is invertible; hence

ρ(L′) = ρ(L) and thus σ(L′) = σ(L). Moreover ⊥N (λI−L′) = R(λI − L) because N (λI−L′) =

R(λI − L)⊥
(

= R(λI − L)
⊥)

. Therefore λ ∈ σp(L
′) iff X 6= R(λI − L), and the asserted

inclusions follow. 2

*18.2 Examples

(i) A linear operator on a finite-dimensional space X is injective iff it is surjective. As a

consequence,

dim(X) < +∞ ⇒ σ(L) = σp(L) (i.e., σc(L) ∪ σr(L) = ∅) ∀L ∈ L(X).

(ii) Ahead we show that, by the Riesz theorem 17.2,

σ(K) \ {0} = σp(K) (i.e., [σc(K) ∪ σr(K)] \ {0} = ∅) ∀K ∈ K(X).

(iii) With the aid of Proposition 18.1, let us analyze the spectrum of the shift operators

Sr, S` ∈ L(`pK(N)), 1 ≤ p < +∞. We have (λI − S`)u = 0 iff λuk = uk+1 for all k, that is, iff u

is a multiple of (1, λ, λ2, . . . ), and therefore σp(S`) = {λ : |λ| < 1}. Since ‖S`‖ = 1, it follows

that r(S`) = 1 and σ(S`) = {λ : |λ| ≤ 1}. Moreover, σ(Sr) = σ(S`) because Sr = S′`. Now

(λI−Sr)u = 0 iff λu1 = 0 and λuk = uk−1 for k > 1, that is, iff u = 0, and therefore σp(Sr) = ∅.
By the proposition, this implies σr(Sr) = σp(S`) and σr(S`) = ∅.

We thus have seen that σp(Sr) and σr(S`) are empty, while

σp(S`) = σr(Sr) = {λ : |λ| < 1} σc(S`) = σc(Sr) = {λ : |λ| = 1} . (18.3)

*18.3 Spectrum of compact operators
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Theorem 18.2 Let X be a Banach space and K : X → X be a compact operator. Then:

(i) σ(K) is a finite or countably infinite set;

(ii) if dimX =∞ then 0 ∈ σ(K);

(iii) all λ ∈ σ(K) \ {0} are eigenvalues whose eigenspaces have finite dimension;

(iv) 0 is the only possible accumulation point of σ(K).

Proof. If λ 6= 0 then by the Riesz Theorem 17.2 N (λI − K) has finite dimension, and

R(λI − K) = X if λI − K is injective. So λ 6∈ σc(K) ∪ σr(K), and (iii) is established. If

0 ∈ ρ(K), then K is invertible and I = K−1K is compact, so dimX < +∞, as it is stated in

(ii).

Next assume that there is a sequence {λn} of mutually distinct eigenvalues which converges to

some λ ∈ C. For any n, let un be an eigenvector associated to λn, and setMn = span{u1, . . . , un}.
We have K(Mn) ⊂ Mn and dimMn = n, since the eigenvectors are linearly independent.

For any n > 1, because of the Riesz Lemma, we can choose vn ∈ Mn with ‖vn‖ = 1 and

dist(vn,Mn−1) ≥ 1/2. Moreover, as λnun−Kun = 0, we have λnvn−Kvn ∈Mn−1. This entails

that

‖Kvn −Kvm‖ = |λn|‖vn − λ−1
n (Kvm + λnvn −Kvn)‖ ≥ |λn|/2 ∀m > n,

as Kvm+λnvn−Kvn ∈Mn−1. Since {Kvn} has a convergent subsequence, we must have λ = 0.

The statement (iv) is thus established, and (i) follows by the boundedness of σ(K). 2
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