
Distributions and Fourier Transform

This chapter includes the following sections:

1. Distributions.

2. Convolution.

3. Fourier transform of functions.

4. Extensions of the Fourier transform.

5. Fourier transform and differential equations.

6. Uncertainty principle.

The symbol [Ex] means that the proof is left as exercise. [] means that a proof is missing.

1 Distributions

The theory of distributions was introduced in the 1940s by Laurent Schwartz, who provided a

thorough functional formulation to previous ideas of Heaviside, Dirac and others, and forged a

powerful tool of calculus. Distributions also offer a solid basis for the construction of Sobolev

spaces, that had been introduced by Sobolev in the 1930s using the notion of weak derivative. These

spaces play a fundamental role in the modern analysis of linear and nonlinear partial differential

equations.

We shall denote by Ω a nonempty domain of RN . The notion of distribution rests upon the idea

of regarding any locally integrable function f : Ω → C as a continuous linear functional acting on

a topological vector space T (Ω) (which must be defined):

Tf (v) :=

∫
Ω
f(x)v(x) dx ∀v ∈ T (Ω). (1.1)

One is thus induced to consider all the functionals of the topological dual T ′(Ω) of T (Ω). In

this way several classes of distributions are generated. The space T (Ω) must be so large that the

functional Tf determines a unique f . On the other hand, the smaller is the space T (Ω), the larger

is its topological dual T ′(Ω). It happens that there exists a smallest space T (Ω), so that T ′(Ω) is

the largest one; the elements of this dual space are what we shall name distributions.

In this section we outline some basic tenets of this theory, and provide some tools that we will

use ahead.

Test functions. Let Ω be a domain of RN . By D(Ω) we denote the space of infinitely differentiable

functions Ω→ C whose support is a compact subset of Ω; these are called test functions.

The null function is the only analytic function in D(Ω), since any element of this space vanishes

in some open set. The bell-shaped function

ρ(x) :=

{
exp

[
(|x|2 − 1)−1

]
if |x| < 1,

0 if |x| ≥ 1
(1.2)

belongs to D(RN ). By suitably translating ρ and by rescaling w.r.t. x, nontrivial elements of D(Ω)

are easily constructed for any Ω.
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For any K ⊂⊂ Ω (i.e., any compact subset K of Ω), let us denote by DK(Ω) the space of the

infinitely differentiable functions Ω→ C whose support is contained in K. This is a linear subspace

of C∞(Ω), and D(Ω) =
⋃
K⊂⊂ΩDK(Ω). The space D(Ω) is equipped with the finest topology among

those that make all injections DK(Ω)→ D(Ω) continuous (so-called inductive-limit topology). This

topology makes D(Ω) a nonmetrizable locally convex Hausdorff space. []

By definition of the inductive-limit topology, a set A ⊂ D(Ω) is open in this topology iff A∩DK(Ω)

is open for any K ⊂⊂ Ω. Here we shall not study this topology: for our purposes, it will suffice to

characterize the corresponding notions of bounded subsets and of convergent sequences.

A subset B ⊂ D(Ω) is bounded in the inductive topology iff it is contained and is bounded in

DK(Ω) for some K ⊂⊂ Ω. [] This means that

(i) there exists a K ⊂⊂ Ω that contains the support of all the functions of B, and

(ii) supv∈B supx∈Ω |Dαv(x)| < +∞ for any α ∈ NN .

As any convergent sequence is necessarily bounded, the following characterization of convergent

sequences of D(Ω) should be easily understood. A sequence {un} in D(Ω) converges to u ∈ D(Ω)

in the inductive topology iff, for some K ⊂⊂ Ω, un, u ∈ DK(Ω) for any n, and un → u in DK(Ω).

[] This means that

(i) there exists K ⊂⊂ Ω that contains the support of any un and of u, and

(ii) supx∈Ω |Dα(un − u)(x)| → 0 for any α ∈ NN . [Ex]

For instance, if ρ is defined as in (1.2), then the sequence {ρ(· − an)} is bounded in D(R) iff the

sequence {an} is bounded. Moreover ρ(· − an)→ ρ(· − a) in D(RN ) iff an → a. [Ex]

Distributions. All linear and continuous functionals D(Ω) → C are called distributions; these

functionals form the (topological) dual space D′(Ω). For any T ∈ D′(Ω) and any v ∈ D(Ω) we also

write 〈T, v〉 in place of T (v).

Theorem 1.1 (Characterization of Distributions)

For any linear functional T : D(Ω)→ C, the following properties are mutually equivalent:

(i) T is continuous, i.e., T ∈ D′(Ω);

(ii) T is bounded, i.e., it maps bounded subsets of D(Ω) to bounded subsets of C;

(iii) T is sequentially continuous, i.e., T (vn)→ 0 whenever vn → 0 in D(Ω);

(iv)

∀K ⊂⊂ Ω,∃m ∈ N, ∃C > 0 : ∀v ∈ D(Ω),

supp(v) ⊂ K ⇒ |T (v)| ≤ C max
|α|≤m

sup
K
|Dαv|. [] (1.3)

(If m is the smallest integer integer such that the latter condition is fulfilled, one says that T has

order m on the compact set K; m may actually depend on K.)

Here are some examples of distributions:

(i) For any f ∈ L1
loc(Ω), the integral functional

Tf : v 7→
∫

Ω
f(x) v(x) dx (1.4)

is a distribution. The mapping f 7→ Tf is injective, so that we may identify L1
loc(Ω) with a subspace

of D′(Ω). These distributions are called regular; the others are called singular.
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(ii) Let µ be either a complex-valued Borel measure on Ω, or a positive measure on Ω that is

finite on any K ⊂⊂ Ω. In either case the functional

Tµ : v 7→
∫

Ω
v(x) dµ(x) (1.5)

is a distribution, that is usually identified with µ itself. in particular this applies to continuous

functions.

(iii) Although the function x 7→ 1/x is not locally integrable in R, its principal value (p.v.),

〈p.v.
1

x
, v〉 := lim

ε→0

∫
|x|>ε

v(x)

x
dx ∀v ∈ D(R) (1.6)

is a distribution. For any v ∈ D(R) and for any a > 0 such that supp(v) ⊂ [−a, a], by the oddness

of the function x 7→ 1/x we have

〈p.v.
1

x
, v〉 = lim

ε→0+

(∫
ε<|x|<a

v(x)− v(0)

x
dx+

∫
ε<|x|<a

v(0)

x
dx

)
= lim

ε→0+

∫
ε<|x|<a

v(x)− v(0)

x
dx =

∫ a

−a

v(x)− v(0)

x
dx.

(1.7)

This limit exists and is finite, since by the mean value theorem∣∣∣∣ ∫
ε<|x|<a

v(x)− v(0)

x
dx

∣∣∣∣ ≤ 2amax
R
|v′| ∀ε > 0.

Notice that the principal value is quite different from other notions of generalized integral.

(iv) For any x0 ∈ Ω (⊂ NN ) the Dirac mass δx0 : v 7→ v(x0) is a distribution. [Ex] In particular

δ0 ∈ D′(R).

(v) The series of Dirac masses
∑∞

n=1 δxn/n
2 is a distribution for any sequence {xn} in Ω. [Ex]

(vi) The series
∑∞

n=1 δxn is a distribution iff any K ⊂⊂ Ω contains at most a finite number

of points of the sequence {xn} (i.e., iff |xn| → +∞). [Ex] (Indeed, if this condition is fulfilled,

whenever any test function is applied to the series this is reduced to a finite sum.) So for instance

∞∑
n=1

δn ∈ D′(R),
∞∑
n=1

δ1/n ∈ D′(R \ {0}), but
∞∑
n=1

δ1/n 6∈ D′(R).

We equip the space D′(Ω) with the sequential (weak star) convergence: for any sequence {Tn}
and any T in D′(Ω),

Tn → T in D′(Ω) ⇔ Tn(v)→ T (v) ∀v ∈ D(Ω). (1.8)

This makes D′(Ω) a nonmetrizable locally convex Hausdorff space. []

Proposition 1.2 If Tn → T in D′(Ω) and vn → v in D(Ω), then Tn(vn)→ T (v). []

— Esercizio: di possono calcolare i coefficienti di Fourier della funzione tangente?
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Differentiation of distributions. We define the multiplication of a distribution by a C∞-function

and the differentiation 1 of a distribution via transposition:

〈fT, v〉 := 〈T, fv〉 ∀T ∈ D′(Ω), ∀f ∈ C∞(Ω), ∀v ∈ D(Ω) , (1.9)

〈D̃αT, v〉 := (−1)|α|〈T,Dαv〉 ∀T ∈ D′(Ω), ∀v ∈ D(Ω),∀α ∈ NN . (1.10)

Via the characterization (1.3), it may be checked that D̃αT is a distribution, and that the operator

D̃α is continuous in D′(Ω). [Ex] (Actually, by (1.3), the operator D̃α may just increase the order of

T at most of |α| on any K ⊂⊂ Ω; see ahead.) Thus any distribution has derivatives of any order.

More specifically, for any f ∈ C∞(Ω), the operators T 7→ fT and D̃α are linear and continuous in

D′(Ω). [Ex]

The definition (1.9) is consistent with the properties of L1
loc(Ω). For any f ∈ L1

loc(Ω), the

definition (1.10) is also consistent with partial integration: if T = Tf , (1.10) indeed reads∫
Ω

[Dαf(x)]v(x) dx = (−1)|α|
∫

Ω
f(x)Dαv(x) dx ∀v ∈ D(Ω), ∀α ∈ NN .

(No boundary terms appears as the support of v is compact.)

By (1.10) and as derivatives commute in D(Ω), the same applies to D′(Ω), that is,

D̃α ◦ D̃βT = D̃α+βT = D̃β ◦ D̃αT ∀T ∈ D′(Ω),∀α, β ∈ NN . (1.11)

The formula of differentiation of the product is extended as follows:

D̃i(fT ) = (Dif)T + fD̃iT

∀f ∈ C∞(Ω),∀T ∈ D′(Ω), for i = 1, .., N ;
(1.12)

in fact, for any v ∈ D(Ω),

〈D̃i(fT ), v〉 = −〈fT,Div〉 = −〈T, fDiv〉 = 〈T, (Dif)v〉 − 〈T,Di(fv)〉
= 〈(Dif)T, v〉+ 〈D̃iT, fv〉 = 〈(Dif)T + fD̃iT, v〉.

A recursive procedure then yields the extension of the classical Leibniz rule:

D̃α(fT ) =
∑
β≤α

(
α

β

)
(Dα−βf)D̃βT

∀f ∈ C∞(Ω),∀T ∈ D′(Ω),∀α ∈ NN . [Ex]

(1.13)

The translation (for Ω = RN ), the conjugation and other linear operations on functions are also

easily extended to distributions via transposition. [Ex]

Comparison with classical derivatives.

Theorem 1.3 (Du-Bois Reymond)

For any f ∈ C0(Ω) and any i ∈ {1, . . . , N}, the two following conditions are equivalent:

(i) D̃if ∈ C0(Ω), 2

(ii) f is classically differentiable w.r.t. xi at each point of Ω, and Dif ∈ C0(Ω).

In either case D̃if = Dif in Ω. []

1In this section we denote the distributional derivative by D̃α, and the classical derivative, i.e. the pointwise limit
of the difference quotient, by Dα, whenever the latter exists.

2 that is, D̃if is a regular distribution that may be identified with a function h ∈ C0(Ω) ∩ L1
loc(Ω). Using the

notation (??), this condition and the final assertion read D̃iTf = Th and D̃iTf = TDif in Ω, respectively.
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The next theorem applies to Ω := ]a, b[, for −∞ ≤ a < b ≤ +∞. First we remind the reader that

a function f ∈ L1(a, b) is absolutely continuous iff

∃g ∈ L1(a, b) : f(x) = f(y) +

∫ x

y
g(ξ) dξ ∀x, y ∈]a, b[.

This entails that f ′ = g a.e. in ]a, b[. Thus if f ∈ L1(a, b) is absolutely continuous, then it is a.e.

differentiable (in the classical sense) and f ′ ∈ L1(a, b).

The converse does not hold: even if f is a.e. differentiable and f ′ ∈ L1(a, b), f ∈ L1(a, b) need

not be absolutely continuous and D̃if need not be a regular distribution. A counterexample is

provided by the Heaviside function H:

H(x) := 0 ∀x < 0 H(x) := 1 ∀x ≥ 0. [Ex] (1.14)

DH = 0 a.e. in R, but of course H is not (a.e. equal to) an absolutely continuous function. Notice

that D̃H = δ0 since

〈D̃H, v〉 = −
∫
R
H(x)Dv(x) dx = −

∫
R+

Dv(x) dx = v(0) = 〈δ0, v〉 ∀v ∈ D(R).

Theorem 1.4 For any f ∈ L1(a, b), the two following conditions are equivalent:

(i) D̃f ∈ L1(a, b),

(ii) f is a.e. equal to an absolutely continuous function.

In either case D̃f = Df in Ω. []

Thus, for complex functions of a single variable:

(i) f is of class C1 iff f and D̃f are both continuous,

(ii) f is absolutely continuous iff f and D̃f are both locally integrable.

Henceforth all derivatives will be meant in the sense of distributions, if not otherwise stated. We

shall denote them by Dα, dropping the tilde.

Examples. (i) D log |x| = 1/x (in R) in standard calculus, but not in the theory of distributions,

as 1/x is not locally integrable in any neighbourhood of x = 0, and thus it is no distribution. We

claim that, for any v ∈ D(R) and any a > 0 such that supp(v) ⊂ [−a, a],

D log |x| = p.v.
1

x
in D′(R). (1.15)

Indeed, as the support of any v ∈ D(R) is contained in some symmetric interval [−a, a], we have

〈D log |x|, v〉 = −〈log |x|, v′〉 = − lim
ε→0+

∫
R\[−ε,ε]

(log |x|) v′(x) dx

= lim
ε→0+

{∫
[−a,a]\[−ε,ε]

1

x
v(x) dx+ (log |ε|) [v(ε)− v(−ε)]

}
(

as

∫
[−a,a]\[−ε,ε]

v(0)

x
dx = 0 and lim

ε→0+
(log |ε|) [v(ε)− v(−ε)] = 0

)
= lim

ε→0+

∫
[−a,a]\[−ε,ε]

v(x)− v(0)

x
dx = 〈p.v.

1

x
, v〉.

(1.16)
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* (ii) D[p.v.(1/x)] 6= −1/x2 as the latter is no distribution. Instead, for any v ∈ D(R) and any

a > 0 such that supp(v) ⊂ [−a, a], we have

〈D̃(p.v.
1

x
), v〉 = −〈p.v.

1

x
, v′〉 (1.7)

= −
∫ a

−a

v′(x)− v′(0)

x
dx

= − lim
a→+∞

∫ a

−a

[v(x)− v(0)− xv′(0)]′

x
dx

= (by partial integration) − lim
a→+∞

∫ a

−a

v(x)− v(0)− xv′(0)

x2
dx.

(1.17)

The latter integral converges, since v has compact support and (by the mean-value theorem) the

integrand equals v′′(ξx), for some ξx between 0 and x. (In passing notice that the condition (1.3)

is fulfilled.)

* (iii) The even function

f(x) =
sin(1/|x|)
|x|

for a.e. x ∈ R (1.18)

is not locally (Lebesgue)-integrable in R; hence it cannot be identified with a distribution. On the

other hand, it is easily seen that the next two limits exist

g(x) := lim
ε→0+

∫ x

ε
f(t) dt ∀x > 0,

g(x) := lim
ε→0−

∫ x

ε
f(t) dt ∀x < 0.

(1.19)

That is, g(x) :=
∫ x

0 f(t) dt, if this is understood as a generalized Riemann integral. Moreover,

g ∈ L1
loc(R) ⊂ D′(R), so that Dg ∈ D′(R); however, Dg cannot be identified with f (6∈ D′(R)).

Actually, the distribution Dg is a regularization of the function f (namely, a distribution T whose

restriction to R \ {0} coincides with f).

As g is odd and has a finite limit (denoted g(+∞)) at +∞, for any v ∈ D(R) and any a > 0 such

that supp(v) ⊂ [−a, a],

〈Dg, v〉 = −〈g, v′〉 = − lim
b→+∞

∫ b

−b
g(x)[v(x)− v(0)]′ dx

= lim
b→+∞

∫ b

−b
f(x)[v(x)− v(0)] dx+ lim

b→+∞
[g(b)− g(−b)]v(0)

=

∫ a

−a
f(x)[v(x)− v(0)] dx+ 2g(+∞)v(0) ∀v ∈ D(R).

(1.20)

* (iv) The modifications for the odd function f̃(x) = [sin(1/|x|)]/x are left to the reader. 2

* Problems of division. For any f ∈ C∞(RN ) and S ∈ D′(RN ), let us consider the problem

find T ∈ D′(RN ) such that fT = S. (1.21)

(This is named a problem of division, since formally T = S/f .) The general solution may be

represented as the sum of a particular solution of the nonhomogeneous equation and the general
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solution of the homogeneous equation fT0 = 0. The latter may depend on a number of arbitrary

constants.

If f does not vanish in RN , then 1/f ∈ C∞(RN ) and (1.21) has one and only one solution:

T = (1/f)S. On the other hand, if f vanishes at some points of RN , the solution is less trivial. Let

us see the case of N = 1, along the lines of [Gilardi: Analisi 3]. For instance, if f(x) = xm (with

m ∈ N), then the homogeneous equation xmT = 0 has the general solution T0 =
∑m−1

n=0 cnD
nδ0,

with cn ∈ C for any n. [Ex] On the other hand, even the simple-looking equation xmT = 1 is more

demanding: notice that x−m 6∈ D′(R) for any integer m ≥ 1.

Support and order of distributions. For any open set Ω̃ ⊂ Ω and any T ∈ D′(Ω), we define

the restriction of T to Ω̃, denoted T
∣∣
Ω̃

, by

〈T
∣∣
Ω̃
, v〉 := 〈T, v〉 ∀v ∈ D(Ω) such that supp(v) ⊂ Ω̃.

Because of Theorem 1.1, T
∣∣
Ω̃
∈ D′(Ω̃).

A distribution T ∈ D′(Ω) is said to vanish in an open subset Ω̃ of Ω iff it vanishes on any function

of D(Ω) supported in Ω̃. Notice that, for any triplet of Euclidean domains Ω1,Ω2,Ω3,

Ω1 ⊂ Ω2 ⊂ Ω3 ⇒
(
T
∣∣
Ω2

)∣∣
Ω1

= T
∣∣
Ω1

∀T ∈ D′(Ω3). (1.22)

There exists then a (possibly empty) largest open set A ⊂ Ω in which T vanishes. [Ex] Its comple-

ment in Ω is called the support of T , and will be denoted by supp(T ).

For any K ⊂⊂ Ω, the smallest integer m that fulfills the estimate (1.3) is called the order of T

in K. The supremum of these orders is called the order of T ; each distribution is thus of either

finite or infinite order. For instance,

(i) regular distributions and the Dirac mass are of order zero; [Ex]

(ii) Dαδ0 is of order |α| for any α ∈ NN ;

(iii) p.v. (1/x) is of order one in D′(R). [Ex]

On the other hand,
∑∞

n=1D
nδn is of infinite order in D′(R).

The next statement directly follows from (1.3).

Theorem 1.5 Any compactly supported distribution is of finite order.

The next theorem is also relevant, and will be applied ahead.

Theorem 1.6 Any distribution whose support is the origin is a finite combination of derivatives

of the Dirac mass. []

The space E(Ω) and its dual. In his theory of distributions, Laurent Schwartz denoted by E(Ω)

the space C∞(Ω), equipped with the family of seminorms

|v|K,α := sup
x∈K
|Dαv(x)| ∀K ⊂⊂ Ω, ∀α ∈ NN .

This renders E(Ω) a locally convex Frèchet space, and induces the topology of uniform convergence

of all derivatives on any compact subset of Ω: for any sequence {un} in E(Ω) and any u ∈ E ,

un → u in E(Ω) ⇔
sup
x∈K
|Dα(un − u)(x)| → 0 ∀K ⊂⊂ Ω, ∀α ∈ NN . (1.23)
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Notice that

D(Ω) ⊂ E(Ω) with continuous and sequentially dense injection, (1.24)

namely, any element of E(Ω) may be approximated by a sequence of D(Ω). This may be checked

via multiplication by a suitable sequence of compactly supported smooth functions. [Ex] By (1.24)

E ′(Ω) ⊂ D′(Ω) with continuous and sequentially dense injection, (1.25)

so that we may identify E ′(Ω) with a subspace of D′(Ω).

As we did for D′(Ω), we shall equip the space E ′(Ω) with the sequential weak star convergence:

for any sequence {Tn} in E ′(Ω) and any T ∈ E ′(Ω),

Tn → T in E ′(Ω) ⇔ Tn(v)→ T (v) ∀v ∈ E(Ω). (1.26)

[This makes E ′(Ω) a nonmetrizable locally convex Hausdorff space.]

The sequential weak star convergence of E ′(Ω) is strictly stronger than that induced by D′(Ω):

for any sequence {Tn} in E ′(Ω) and any T ∈ E ′(Ω),

Tn → T in E ′(Ω)
6⇐⇒ Tn → T in D′(Ω).[Ex] (1.27)

If Ω = R, the sequence {χ[n,n+1]} (the characteristic functions of the intervals [n, n + 1]) is a

counterexample to the converse implication:

χ[n,n+1] → 0 in D′(RN ) but not in E ′(RN ).

Theorem 1.7 E ′(Ω) may be identified with the subspace of distributions having compact support.

We just outline a part of the argument. Let T ∈ D′(Ω) have support K ⊂⊂ Ω. For any v ∈ E(Ω),

multiplying it by χK and then convoluting with a regularizing kernel ρ (see (1.2)), one may construct

v0 ∈ D(Ω) such that v0 = v in K. [Ex] One may thus define T̃ (v) by setting T̃ (v) = T (v0). It is

easily checked that this determines a unique T̃ ∈ E ′(Ω). Compactly supported distributions may

thus be identified with certain elements of E ′(Ω).

The proof of the surjectivity of the mapping T 7→ T̃ is less straightforward, and is here omitted.

On the basis of the latter theorem, examples of elements of E ′(Ω) are easily provided. E.g.:

(i) any compactly supported f ∈ L1
loc belongs to E ′(Ω),

(ii)
∑m

n=1D
αnδan ∈ E ′(Ω), for any finite families a1, ..., am ∈ Ω and α1, ..., αm ∈ NN ,

(iii)
∑∞

n=1 n
−2Dαnδan ∈ E ′(Ω), for any sequence {an} contained in a compact subset of Ω, and

any bounded sequence of multi-indices {αn}. (This is no element of E ′(Ω) if either the coefficients

n−2 are dropped, or the sequence {an} is not confined to a compact subset of Ω, or the sequence

of multi-indices {αn} is unbounded.)

On the basis of the latter theorem, we may apply to E ′(Ω) the operations that we defined for

distributions. It is straightforward to check that this space is stable by differentiation, multiplication

by a smooth function, and so on.
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The space S of rapidly decreasing functions. In order to extend the Fourier transform

to distributions, Laurent Schwartz introduced the space of (infinitely differentiable) rapidly

decreasing functions (at ∞): 3

S
(
RN
)

:=
{
v ∈ C∞ : ∀α, β ∈ NN , xβDαv ∈ L∞

}
=
{
v ∈ C∞ : ∀α ∈ NN , ∀m ∈ N,
|x|mDαv(x)→ 0 as |x| → +∞

}
.

(1.28)

(The latter equality is easily checked.) [Ex] We shall write S in place of S
(
RN
)
. This is a locally

convex Fréchet space equipped with either of the following equivalent families of seminorms []

|v|α,β := sup
x∈RN

|xβDαv(x)| α, β ∈ NN , (1.29)

|v|m,α := sup
x∈RN

(1 + |x|2)m|Dαv(x)| m ∈ N, α ∈ NN . (1.30)

For instance, for any θ ∈ C∞ such that θ(x)/|x|a → +∞ as |x| → +∞ for some a > 0, e−θ(x) ∈ S.

By the Leibniz rule, for any polynomials P and Q, the operators

u 7→ P (x)Q(D)u, u 7→ P (D)[Q(x)u] (1.31)

map S to S and are continuous. [Ex] It is easily checked that

D ⊂ S ⊂ E with continuous and sequentially dense injections. (1.32)

The space S ′ of tempered distributions. We shall denote the (topological) dual space of S by

S ′. As S is a metric space, this is the space of the linear functionals T : S → C such that

{vn} ⊂ S, vn → 0 in S ⇒ 〈T, vn〉 → 0. (1.33)

The elements of this space are named tempered distributions: we shall see that actually

S ′ ⊂ D′ (up to identifications) with continuous injection. Here are some examples:

(i) any compactly supported T ∈ D′(Ω),

(ii) any f ∈ Lp with p ∈ [1,+∞] (since, by the Hölder inequality, (1 + |x|)−af ∈ L1 for any

a > 1/p′, p′ being the conjugate index of p),

(iii) any function f such that |f(x)| ≤ C(1 + |x|)m for some C > 0 and m ∈ N,

(iv) f(x) = p(x)w(x), for any polynomial p and any w ∈ L1. [Ex]

On the other hand L1
loc is not included in S ′. E.g., e|x| 6∈ S ′. Nevertheless ahead we shall see that

ex cos(ex) ∈ S ′ for N = 1, at variance with what might be expected.

Convergence in S ′. As we did for D′(Ω) and E ′(Ω), we shall equip the space S ′ with the sequential

weak star convergence: for any sequence {Tn} in S ′ and any T ∈ S ′,

Tn → T in S ′ ⇔ Tn(v)→ T (v) ∀v ∈ S. (1.34)

3 Laurent Schwartz founded the theory of distributions upon the dual of three main function spaces: D(Ω), E(Ω)
and S(RN ). The two latter are Fréchet space, at variance with the first one and with the respective (topological)
duals.

Notice that this does not subsume any monotonicity property; e.g., the nonmonotone function e−|x|
2

sinx is an
element of S(R).
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[This makes S ′ a nonmetrizable locally convex Hausdorff space.]

As D ⊂ S ′ ⊂ D′ and D is a sequentially dense subset of D′, it follows that

S ′ ⊂ D′ with continuous and sequentially dense injection; [Ex] (1.35)

namely, any element of D′ may be approximated by a sequence of S ′. The sequential weak star

convergence of S ′ is strictly stronger than that induced by D′: for any sequence {Tn} in S ′ and any

T ∈ S ′,

Tn → T in S ′ 6⇐⇒ Tn → T in D′.[Ex] (1.36)

In R, {e|x|χ[n,n+1]} is a counterexample to the converse implication:

e|x|χ[n,n+1] → 0 in D′ but not in S ′. (1.37)

On the other hand L1
loc is not included in S ′, not even for N = 1. E.g., e|x| 6∈ S ′.

As S ⊂ E with sequentially dense inclusion, it follows that

E ′ ⊂ S ′ with continuous and sequentially dense injection; [Ex] (1.38)

Because of (1.38), we may apply to S ′ the operations that we defined for distributions. It

is straightforward to check that this space is stable by differentiation, multiplication by smooth

functions, and so on.

Overview of distribution spaces. We introduced the spaces D(Ω), E(Ω), with (up to identifi-

cations)

D(Ω) ⊂ E(Ω) with continuous and dense injection. (1.39)

For Ω = RN (which is not displayed), we also defined S, which is such that

D ⊂ S ⊂ E with continuous and dense injection. (1.40)

We equipped the respective dual spaces with the weak star convergence. (1.39) and (1.40) re-

spectively yield

E ′(Ω) ⊂ D′(Ω) with continuous and sequentially dense injection, (1.41)

and, for Ω = RN ,

E ′ ⊂ S ′ ⊂ D′ with continuous and sequentially dense injection. (1.42)

L. Schwartz also introduced spaces of slowly increasing functions and rapidly decreasing distri-

butions. But we shall not delve on them.

Exercises.
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2 Convolution

Convolution of L1-functions. For any measurable functions f, g : RN → C, we call convolution

product (or just convolution) of f and g the function

(f ∗ g)(x) :=

∫
f(x− y)g(y) dy for a.e. x ∈ RN , (2.43)

whenever this integral converges (absolutely) for a.e. x. (We write
∫
...dy in place of

∫
...
∫
RN ... dy1...dyN ,

and omit to display the domain RN .) Note that

supp(f ∗ g) ⊂ supp(f) + supp(g). [Ex] (2.44)

Henceforth, whenever A and B are two topological vector spaces of functions for which the

convolution makes sense, we set A ∗B := {f ∗ g : f ∈ A, g ∈ B}, and define A ·B similarly.

Proposition 2.1 (i) L1 ∗ L1 ⊂ L1, and

‖f ∗ g‖L1 ≤ ‖f‖L1‖g‖L1 ∀f, g ∈ L1 . (2.45)

(ii) L1
loc ∗ L1

comp ⊂ L1
loc, and 4

‖f ∗ g‖L1(K) ≤ ‖f‖L1(K−supp(g))‖g‖L1

∀K ⊂⊂ RN , ∀f ∈ L1
loc,∀g ∈ L1

comp.
(2.46)

Moreover L1
comp ∗ L1

comp ⊂ L1
comp.

(iii) For N = 1, L1
loc(R+) ∗ L1

loc(R+) ⊂ L1
loc(R+). 5 For any f, g ∈ L1

loc(R+),

(f ∗ g)(x) =

{∫ x
0 f(x− y)g(y) dy for a.e. x ≥ 0

0 for a.e. x < 0,
(2.47)

‖f ∗ g‖L1(0,M) ≤ ‖f‖L1(0,M)‖g‖L1(0,M) ∀M > 0. (2.48)

The mapping (f, g) 7→ f ∗ g is thus continuous in each of these three cases.

Proof. (i) For any f, g ∈ L1, the function (RN )2 → C : (z, y) 7→ f(z)g(y) is (absolutely)

integrable, and by changing integration variable we get∫∫
f(z)g(y) dz dy =

∫∫
f(x− y)g(y) dy dx.

By Fubini’s theorem the function f ∗ g : x 7→
∫
f(x− y)g(y) dy is then integrable. Moreover

‖f ∗ g‖L1 =

∫
dx
∣∣∣∫ f(x− y)g(y) dy

∣∣∣
≤
∫∫
|f(x− y)||g(y)| dx dy =

∫∫
|f(z)||g(y)| dz dy = ‖f‖L1‖g‖L1 .

4By L1
comp we denote the space of the functions v ∈ L1 that have compact support. The support of a measurable

function v : Ω→ R is the complement in Ω of the set of the points that have a neighborhood in which v vanishes a.e..
5 Any function or distribution defined on R+ will be automatically extended to the whole R with value 0. (In

signal theory, the functions of time that vanish for any t < 0 are said causal).
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(ii) For any f ∈ L1
loc and g ∈ L1

comp, setting Sg := supp(g),

(f ∗ g)(x) =

∫
Sg

f(x− y)g(y) dy for a.e. x ∈ RN .

Moreover, for any K ⊂⊂ RN ,

‖f ∗ g‖L1(K) ≤
∫
K
dx

∫
Sg

|f(x− y)g(y)| dy =

∫
Sg

dy

∫
K
|f(x− y)g(y)| dx

=

∫
Sg

dy

∫
K−Sg

|f(z)g(y)| dz ≤ ‖f‖L1(K−Sg)‖g‖L1 .

The proof of the inclusion L1
comp ∗ L1

comp ⊂ L1
comp is based on (2.44), and is left to the Reader.

(iii) Part (iii) may be proved by means of an argument similar to that of part (ii), that we also

leave to the reader. 2

Proposition 2.2 L1, L1
comp and L1

loc(R+), equipped with the convolution product, are commutative

algebras (without unit). 6 In particular,

f ∗ g = g ∗ f, (f ∗ g) ∗ h = f ∗ (g ∗ h) a.e. in RN

∀(f, g, h) ∈ (L1)3 ∪
(
L1

loc × L1
comp × L1

comp

)
.

(2.49)

If N = 1, the same holds for any (f, g, h) ∈ L1
loc(R+)3, too.

The mapping (f, g, h) 7→ f ∗ g ∗ h is continuous for any choice of the above spaces.

Proof. For any (f, g, h) ∈ (L1)3 and a.e. x ∈ RN ,

(f ∗ g)(x) =

∫
f(x− y)g(y) dy =

∫
f(z)g(x− z)dz = (g ∗ f)(x),

[(f ∗ g) ∗ h](x) =

∫
[(f ∗ g)](z)h(x− z) dz =

∫
dz

∫
f(y)g(z − y) dy h(x− z)

=

∫∫
f(y)g(t)h((x− y)− t) dt dy

=

∫
dy f(y)

∫
g(t)h(x− y − t) dt

=

∫
f(y)[(g ∗ h)](x− y) dy = [f ∗ (g ∗ h)](x).

6 * Let a linear space X over a field K (= C or R) be equipped with a product ∗ : X ×X → X. This is called an
algebra iff, for any u, v, z ∈ X and any λ ∈ K:

(i) u ∗ (v ∗ z) = (u ∗ v) ∗ z,
(ii) (u+ v) ∗ z = u ∗ z + v ∗ z, z ∗ (u+ v) = z ∗ u+ z ∗ v,
(iii) λ(u ∗ v) = (λu) ∗ v = u ∗ (λv).
The algebra is said commutative iff the product ∗ is commutative.
X is called a Banach algebra iff it is both an algebra and a Banach space (over the same field), and, denoting

the norm by ‖ · ‖,
(iv) ‖u ∗ v‖ ≤ ‖u‖‖v‖ for any u, v ∈ X.
X is called a Banach algebra with unit iff
(v) there exists (a necessarily unique) e ∈ X such that ‖e‖ = 1, and e ∗ u = u ∗ e = u for any u ∈ X.
(If the unit is missing, it may be constructed in a canonical way...)
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The cases of (f, g, h) ∈
(
L1

loc×L1
comp×L1

comp

)
and (f, g, h) ∈ L1

loc(R+)3 are analogously checked.

[Ex] 2

It is easily seen that (L1, ∗) and (L∞, ·) (here “·” stands for the pointwise product) are commu-

tative Banach algebras; (L∞, ·) has the unit element e ≡ 1.

Convolution of Lp-functions. The following result generalizes Proposition 2.1. 7

• Theorem 2.3 (Young) Let

p, q, r ∈ [1,+∞], p−1 + q−1 = 1 + r−1. 8 (2.51)

Then: (i) Lp ∗ Lq ⊂ Lr and

‖f ∗ g‖Lr ≤ ‖f‖Lp‖g‖Lq ∀f ∈ Lp,∀g ∈ Lq. (2.52)

(ii) Lploc ∗ L
q
comp ⊂ Lrloc and

‖f ∗ g‖Lr(K) ≤ ‖f‖Lp(K−supp(g))‖g‖Lq

∀K ⊂⊂ RN ,∀f ∈ Lploc,∀g ∈ L
q
comp.

(2.53)

Moreover Lpcomp ∗ Lqcomp ⊂ Lrcomp.

(iii) For N = 1, Lploc(R
+) ∗ Lqloc(R

+) ⊂ Lrloc(R+), and

‖f ∗ g‖Lr(0,M) ≤ ‖f‖Lp(0,M)‖g‖Lq(0,M)

∀M > 0,∀f ∈ Lploc(R
+), ∀g ∈ Lqloc(R

+).
(2.54)

The mapping (f, g) 7→ f ∗ g is thus continuous in each of these three cases.

* Proof. (i) If p = +∞, then by (2.8) q = 1 and r = +∞, and (2.52) obviously holds; let us then

assume that p < +∞. For any fixed f ∈ Lp, the generalized (integral) Minkowski inequality and

the Hölder inequality respectively yield

‖f ∗ g‖Lp =
∥∥∥∫ f(x− y)g(y) dy

∥∥∥
Lp
≤ ‖f‖Lp‖g‖L1 ∀g ∈ L1 ,

‖f ∗ g‖L∞ = ess sup
x∈RN

∫
f(x− y)g(y) dy ≤ ‖f‖Lp‖g‖Lp′ ∀g ∈ Lp′

(p−1 + (p′)−1 = 1). Thus the mapping g 7→ f ∗ g is (linear and) continuous from L1 to Lp and from

Lp
′

to L∞. By the Riesz-Thorin Theorem (see below), this mapping is then continuous from Lq to

Lr and inequality (2.52) holds, provided that

∃θ ∈ ]0, 1][:
1

q
=
θ

1
+

1− θ
p′

,
1

r
=
θ

p
+

1− θ
∞

.

7 This theorem may be compared with the following result, that easily follows from the Hölder inequality:
If p, q, r ∈ [1,+∞[ are such that p−1 + q−1 = r−1, then

uv ∈ Lr(Ω), ‖uv‖r ≤ ‖u‖p‖v‖q ∀u ∈ Lp(Ω), ∀v ∈ Lq(Ω).[Ex] (2.50)

8 Here we set (+∞)−1 := 0.
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As the latter equality yields θ = p/r, by the first one we get p−1 + q−1 = 1 + r−1.

(ii) For any f ∈ Lploc and g ∈ Lqcomp, setting Sg := supp(g),

(f ∗ g)(x) =

∫
Sg

f(x− y)g(y) dy converges for a.e. x ∈ RN .

If r = +∞ then p = q = 1, and we are in the situation of part (ii) of Proposition 2.1; let us then

assume that r 6= +∞. For any K ⊂⊂ RN , denoting by χK,g the characteristic function of K − Sg,
we have

‖f ∗ g‖rLr(K) =

∫
K

∣∣∣∣ ∫
Sg

f(x− y)g(y) dy

∣∣∣∣r dx
≤
∫ ∣∣∣∣ ∫ (χK,gf)(x− y)g(y) dy

∣∣∣∣r dx.
As χK,gf ∈ Lp, by part (i) the latter integral is finite.

(iii) Part (iii) may be proved by means of an argument similar to that of part (ii), that we leave

to the reader. 2

* Lemma 2.4 (Riesz-Thorin’s theorem) Let Ω,Ω′ be nonempty open subsets of RN . For i =

1, 2, let pi, qi ∈ [1,+∞] and assume that

T : Lp1(Ω) + Lp2(Ω)→ Lq1(Ω′) + Lq2(Ω′) (2.55)

is a linear operator such that

T : Lpi(Ω)→ Lqi(Ω′) is continuous. (2.56)

Let θ ∈ ]0, 1[, and p := p(θ), q := q(θ) be such that

1

p
=

θ

p1
+

1− θ
p2

,
1

q
=

θ

q1
+

1− θ
q2

. (2.57)

Then T maps Lp(Ω) to Lq(Ω′), is linear and continuous. Moreover, if M1 and M2 are two

constants such that

‖Tf‖Lqi (Ω′) ≤Mi‖f‖Lpi (Ω) ∀f ∈ Lpi(Ω) (i = 1, 2), (2.58)

then

‖Tf‖Lq(Ω′) ≤M θ
1M

1−θ
2 ‖f‖Lp(Ω) ∀f ∈ Lp(Ω). [] (2.59)

By this result, we may regard Lp(θ)(Ω) as an interpolate space between Lp1(Ω) and Lp2(Ω). ((2.59)

is accordingly called the interpolate inequality.) This theorem is actually a prototype of the theory

of Banach spaces interpolation.

For any f : RN → C, let us set f̌(x) = f(−x).

Corollary 2.5 Let

p, q, s ∈ [1,+∞], p−1 + q−1 + s−1 = 2. (2.60)
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Then

∀(f, g, h) ∈ Lp × Lq × Ls,
(f ∗ g) · h, g · (f̌ ∗ h), f · (ǧ ∗ h) ∈ L1, and∫

(f ∗ g) · h =

∫
g · (f̌ ∗ h) =

∫
f · (ǧ ∗ h).

(2.61)

The same holds also

∀(f, g, h) ∈
(
Lpcomp × L

q
loc × L

s
comp

)
,

∀(f, g, h) ∈ Lploc(R
+)× Lqloc(R

+)× Lscomp(R+).
(2.62)

The same holds also

∀(u, v, w) ∈
(
Lpcomp × L

q
loc × L

s
comp

)
,

∀(u, v, w) ∈ Lploc(R
+)× Lqloc(R

+)× Lscomp(R+).
(2.63)

(In the language of operator theory, f̌∗ is the adjoint of the operator f∗.)

Proof. As r−1 +s−1 = 1 by (2.52) and (2.60), the Hölder inequality yields the inclusions of (2.61).

[Ex] The first equality in (2.61) follows from the computation∫
(u ∗ v)w dx =

∫ (∫
u(x− y)v(y) dy

)
w(x) dx

=

∫
v(y)

(∫
ǔ(y − x)w(x) dx

)
dy =

∫
v(ǔ ∗ w) dy;

the second holds since u ∗ v = v ∗ u. The assertions (2.63) are similarly checked; this is left to the

reader. 2

Convolution and translation. Let us next set τhf(x) := f(x + h) for any f : RN → C and

any x, h ∈ RN .

Let us denote by C0(RN ) the space of continuous functions RN → C (which is a Fréchet space

equipped with the family of sup-norms on compact subsets of RN ), and by C0
0 (RN ) the subspace of

C0(RN ) of functions that vanish at infinity (this is a Banach space equipped with the sup-norm).

Lemma 2.6 As h→ 0,

τhf → f in C0, ∀f ∈ C0, (2.64)

τhf → f in Lp, ∀f ∈ Lp, ∀p ∈ [1,+∞[. (2.65)

Proof. As any f ∈ C0 is locally uniformly continuous, τhf → f uniformly in any K ⊂⊂ RN ;

(2.64) thus holds. This yields (2.65), as C0 is dense in Lp for any p ∈ [1,+∞[. 2

By the next result, in the Young theorem the space L∞ may be replaced by L∞ ∩ C0, and in

part (i) also by L∞ ∩ C0
0 .

* Proposition 2.7 Let p, q ∈ [1,+∞] be such that p−1 + q−1 = 1. Then:

f ∗ g ∈ C0 ∀(f, g) ∈ (Lp × Lq) ∪ (Lploc × L
q
comp), (2.66)

f ∗ g ∈ C0 ∀(f, g) ∈ Lploc(R
+)× Lqloc(R

+) if N = 1, (2.67)

(f ∗ g)(x)→ 0 as |x| → +∞ ∀(f, g) ∈ Lp × Lq, ∀p, q ∈ [1,+∞[. (2.68)
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Proof. For instance, let p 6= +∞ and (f, g) ∈ Lp × Lq; the other cases may be dealt with

analogously. By Lemma 2.6,

‖τh(f ∗ g)− (f ∗ g)‖L∞ =
∥∥∥∫ [f(x+ h− y)− f(x− y)]g(y)] dy

∥∥∥
L∞

≤ ‖τhf − f‖Lp‖g‖Lq → 0 as h→ 0;

(2.69)

the function f ∗ g may then be identified with a uniformly continuous function.

Let {fn} ⊂ Lpcomp and {gn} ⊂ Lqcomp be such that fn → f in Lp and gn → g in Lq. Hence fn ∗ gn
has compact support, and fn ∗gn → f ∗g uniformly. This yields the final statement of the theorem.

2

It is easily seen that (2.68) fails if either p or q = +∞.

Regularization by convolution. A function ρ : RN → R is called a mollifier iff

ρ ∈ C∞(RN ), ρ ≥ 0, ρ(x) = 0 if |x| ≥ 1,

∫
RN

ρ(x) dx = 1. (2.70)

A standard construction provides an example:

v(x) := exp
[(
|x|2 − 1

)−1]
if |x| < 1, v(x) := 0 if |x| ≥ 1,

ρ(x) :=
v(x)∫

RN v(y) dy
, ρε(x) := ε−Nρ

(x
ε

)
∀x ∈ RN , ∀ε > 0.

(2.71)

For any u ∈ L1(Ω), let us denote by ũ ∈ L1(RN ) the extension of u with zero value on RN \ Ω.

For any ε > 0, we then define the regularization Rεu of u by

Rεu(x) := (ρε ∗ ũ)(x) =

∫
Ω
ρε(x− y)u(y) dy ∀x ∈ RN . (2.72)

Notice that, since ρε ∗ ũ = ũ ∗ ρε,

Rεu(x) = ε−N
∫
RN

ρ
(y
ε

)
ũ(x− y) dy =

∫
RN

ρ(t)ũ(x− εt) dt. (2.73)

The following theorem summarizes some properties of the operator Rε.

Proposition 2.8 Let u ∈ L1
loc and define Rε as above. Then:

(i) For any ε > 0, Rεu ∈ C∞(RN ) and

DαRεu(x) = ε−N−|α|
∫

Ω

[
(Dαρ)

(x− y
ε

)]
u(y) dy = ε−|α|

∫
RN

[
Dαρ(y)

]
ũ(x− εy) dy (2.74)

for any x ∈ RN and any α ∈ NN .

(ii) For any ε > 0, the support of Rεu is contained within the ε-neighbourhood of the support of

u. (Mollification thus preserves the compactness of the support.)

(iii) For any v ∈ C0
c (RN ), Rεv → v uniformly as ε→ 0.
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Let us next assume that Ω is an open subset of RN , and u ∈ Lp(Ω).

(iv) For any p ∈ [1,+∞] and u ∈ Lp(Ω), Rεu ∈ Lp(Ω) and ‖Rεu‖Lp(Ω) ≤ ‖u‖Lp(Ω).

(v) For any p ∈ [1,+∞[ and u ∈ Lp(Ω), ‖Rεu− u‖Lp(Ω) → 0 as ε→ 0.

Proof. (i) All the derivatives of ρ are bounded, and

Dα
x [ρε(x− y)] = ε−NDα

x

[
ρ
(x− y

ε

)]
= ε−N−|α|(Dαρ)

(x− y
ε

)
,

for all x ∈ RN and all α ∈ NN . Next let us differentiate both sides of (2.73), and interchange

derivation and integration (this is easily justified via dominated convergence). This yields (2.74).

(ii) The stated property on the support of Rεf stems from (2.44) and (2.73).

(iii) Let v ∈ C0
c (RN ). As ‖ρ‖L1(RN ) = 1 and ρ ≥ 0, for any x ∈ RN and any ε > 0 we have

|Rεv(x)− v(x)| (2.73)
=

∫
B(0,1)

ρ(y)[v(x− εy)− v(x)] dy

≤
∫
B(0,1)

ρ(y)|v(x− εy)− v(x)| dy ≤ max
|z−x|≤ε

|v(z)− v(x)|.

As v is assumed to be uniformly continuous on RN , it follows that Rεv → v uniformly as ε→ 0.

(iv) As ‖ρε‖L1(RN ) = 1, by the Young Theorem we get

‖Rεu‖Lp(Ω) = ‖ρε ∗ ũ‖Lp(Ω) ≤ ‖ρε‖L1(RN ) ‖ũ‖Lp(RN ) = ‖u‖Lp(Ω).

If u ∈ L∞(Ω) the same holds for p =∞.

(v) By virtue of the density of C0
c (Ω) in Lp(Ω), for any η > 0 there exists vη ∈ C0

c (Ω) with

‖u− vη‖Lp(Ω) ≤ η. By using the linearity of Rε and part (iii), we get

‖Rεu− u‖Lp(Ω)

≤ ‖Rεu−Rεvη‖Lp(Ω) + ‖Rεvη − vη‖Lp(Ω) + ‖vη − u‖Lp(Ω)

≤ ‖Rεvη − vη‖Lp(Ω) + 2η.

(2.75)

Keeping η > 0 fixed, for ε → 0 we have ‖Rεvη − vη‖Lp(Ω) → 0 as a consequence of part (iii).

From (2.75) we thus conclude that lim supε→0 ‖Rεu− u‖Lp(Ω) ≤ 2η. Since η > 0 was arbitrary, the

assertion follows. 2

* Convolution of distributions. By part (ii) of Proposition 2.1,

f ∗ g ∈ L1
loc ∀(f, g) ∈ (L1

loc×L1
comp) ∪ (L1

comp×L1
loc).

For any ϕ ∈ D, then∫
(f ∗ g)(x)ϕ(x) dx =

∫∫
f(x− y)g(y)ϕ(x) dxdy =

∫∫
f(z)g(y)ϕ(z + y) dzdy, (2.76)

and of course each of these double integrals equals the corresponding iterated integral, by Fubini’s

theorem. This formula allows one to extend the operation of convolution to distributions, under

analogous restrictions on the supports. Let either (T, S) ∈ (D′×E ′) ∪ (E ′×D′), and define

〈T ∗ S, ϕ〉 := 〈Tx, 〈Sy, ϕ(x+ y)〉〉 ∀ϕ ∈ D. (2.77)

17



(In 〈Sy, ϕ(x + y)〉 the variable x is just a parameter; if this pairing is reduced to an integration,

then y is the integration variable.) This is meaningful, since

S ∈ E ′ (S ∈ D′, resp.) ⇒ 〈Sy, ϕ(x+ y)〉 ∈ D (∈ E , resp.) ∀ϕ ∈ D.[Ex] (2.78)

For N = 1, if T ∈ D′(R+), then (2.77) still makes sense.

On the other hand, one cannot write 〈TxSy, ϕ(x + y)〉 in the duality between D′(RN×RN ) and

D(RN×RN ), since the support of the mapping (x, y) 7→ ϕ(x+ y) is compact only if ϕ ≡ 0.

In E ′ the convolution commutes and is associative. Thus (E ′, ∗) is a convolution algebra, with

unit element δ0. Here are some further properties:

D′ ∗ E ′ ⊂ D′, E ′ ∗ E ′ ⊂ E ′, (2.79)

S ′ ∗ E ′ ⊂ S ′, S ∗ S ′ ⊂ E ∩ S ′, S ∗ E ′ ⊂ S, (2.80)

and in all of these cases the convolution is separately continuous w.r.t. either factor.

For instance, the inclusion D′ ∗ E ′ ⊂ D′ is an extension of L1
loc ∗ L1

comp ⊂ L1
loc, and actually

may be proved by approximating distributions by L1
loc- or L1

comp-functions, by using the foregoing

inclusion, and then passing to the limit. This procedure may also be used to prove E ′ ∗ E ′ ⊂ E ′.
The other inclusions may analogously be justified by approximation and passage to the limit.

In general the convolution of distributions is not associative. For instance,

(1 ∗ δ′) ∗H = (1′ ∗ δ) ∗H = (0 ∗ δ) ∗H = 0 ∗H = 0,

1 ∗ (δ′ ∗H) = 1 ∗ (δ ∗H ′) = 1 ∗ δ = 1.
(2.81)

3 The Fourier Transform in L1

Integral transforms. These are linear integral operators T that typically act on functions R→ C,

and have the form (
û(ξ) :=

)
(T u)(ξ) =

∫
R
K(ξ, x)u(x) dx ∀ξ ∈ R, (3.1)

for a prescribed kernel K : R2 → C, and for any transformable function u. 9 The main properties

of this class of transforms include the following:

(i) Inverse transform. Under appropriate restrictions, there exists another kernel K̃ : R2 → C
such that (formally) ∫

R
K̃(x, ξ)K(ξ, y) dξ = δ0(x− y) ∀x, y ∈ R. (3.2)

Denoting by T̃ the integral operator associated to K̃, we thus have T̃ T u = T T̃ u = u for any

transformable u.

(ii) Commutation Formula. Any integral transform is associated to a class of linear operators

(typically of differential type), that act on functions of time. For any such operator, L, there exists

a function, L̃ = L̃(ξ), such that

T LT −1 = L̃ (L̃ is a function). (3.3)

9 To devise hypotheses that encompass a large number of integral transforms is not easy and may not be convenient.
In this brief overview we then refer to the Fourier transform. We are intentionally sloppy and drop regularity
properties, that however are specified ahead.
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For a prescribed function f = f(x), by applying T an equation of the form Lu = f is then

transformed to L̃(ξ)û(ξ) = f̂(ξ). Thus û = f̂/L̃, whence u = T̃ (f̂/L̃), provided that L̃(ξ) 6= 0

for a.e. ξ. This procedure is at the basis of so-called symbolic (or operational) calculus, that was

introduced by O. Heaviside at the end of the 19th century.

The first of the transforms that we illustrate is named after J. Fourier, who introduced it at the

beginning of the 19th century, and is the keystone of all integral transforms. In the 1950s Laurent

Schwartz introduced the space of tempered distributions, and extended the Fourier transform to

this class. Because of the commutation formula, this transform allows one to reduce linear ordinary

differential equations with constant coefficients to algebraic equations; this found many uses in the

study of stationary problems.

The Fourier transform in L1. We shall systematically deal with spaces of functions from the

whole RN to C. We shall then write L1 in place of L1(RN ), C0 in place of C0(RN ), and so on. For

any u ∈ L1, we define the Fourier transform (also called Fourier integral) û of u by 10

û(ξ) := (2π)−N/2
∫
RN

e−iξ·xu(x) dx ∀ξ ∈ RN ; (3.4)

here ξ · x :=
∑N

i=1ξixi. This is a Lebesgue integral.

Proposition 3.1 The formula (3.4) defines a linear and continuous operator

F : L1 → C0
b : u 7→ û;

‖û‖L∞ ≤ (2π)−N/2‖u‖L1 ∀u ∈ L1.[Ex]
(3.5)

(By C0
b we denote the Banach space C0 ∩ L∞, equipped with the sup-norm.)

Thus ûn → û uniformly in RN whenever un → u in L1. In passing notice that ‖û‖L∞ =

(2π)−N/2‖u‖L1 = û(0) for any nonnegative u ∈ L1, as in this case

‖û‖C0
b
≤ (2π)−N/2‖u‖L1 = û(0) ≤ ‖û‖C0

b
.

Apparently, no simple condition characterizes the image set F(L1).

Cosine and sine transforms. For any u ∈ L1, (3.4) also reads

û(ξ) = (2π)−N/2
∫
RN

cos(ξ ·x)u(x) dx− i(2π)−N/2
∫
RN

sin(ξ ·x)u(x) dx (3.6)

for any ξ ∈ RN . Defining the so-called cosine transform and sine transform respectively by

Cu(ξ) = (2/π)−N/2
∫
RN

cos(ξ ·x)u(x) dx ∀ξ ∈ RN ,∀u ∈ L1, (3.7)

Su(ξ) = (2/π)−N/2
∫
RN

sin(ξ ·x)u(x) dx ∀ξ ∈ RN , ∀u ∈ L1; (3.8)

we thus have

û = Cu − iSu ∀u ∈ L1. (3.9)

10 Some authors introduce a factor 2π in the exponent under the integral, others omit the factor in front of the
integral. Our definition is maybe the most frequently used. Each of these modifications simplifies some formulas, but
none is able to simplify all of them.
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Therefore, for any u ∈ L1,

u is even ⇔ û(ξ) = Cu(ξ) ∀ξ ∈ RN , (3.10)

u is odd ⇔ û(ξ) = −iSu(ξ) ∀ξ ∈ RN . (3.11)

The functions Cu and Su are real valued iff so is u itself. Above the Fourier series of periodic

functions were similarly decomposed into the sum of a cosine series and a sine series.

The following properties mimic those of the Fourier series and have the same basis: the properties

of the exponential function e−iξ·x. In particular, if the argument of the input function is shifted,

then the transformed function is multiplied by an exponential function; 11 conversely, if the input

function is modulated, then the argument of the transformed function is shifted.

Proposition 3.2 For any u ∈ L1, 12

v(x) = u(x− y) ⇒ v̂(ξ) = e−iξ·yû(ξ) ∀y ∈ RN , (3.12)

v(x) = eix·ηu(x) ⇒ v̂(ξ) = û(ξ − η) ∀η ∈ RN , (3.13)

v(x) = u(x) ⇒ v̂(ξ) = û(−ξ), (3.14)

u is real ⇒ û(−ξ) = û(ξ), (3.15)

u is imaginary ⇒ û(−ξ) = −û(ξ), (3.16)

u is even ⇒ û is even, (3.17)

u is odd ⇒ û is odd, (3.18)

u is radial ⇒ û is radial, (3.19)

v(x) = u
(
A−1x

)
⇒ v̂(ξ) = |detA| û(A∗ξ) ∀A ∈ RN

2
,detA 6= 0. (3.20)

[Ex]

Let us define the operators

(Tyu)(x) = u(x− y), (Myu)(x) = eiξ·yu(x) ∀x, y ∈ RN , ∀u ∈ L1. (3.21)

(3.12) and (3.12) then read

v = Tyu ⇒ v̂(ξ) = M−yû ∀y ∈ RN , (3.22)

v = Mηu ⇒ v̂(ξ) = Tηû ∀η ∈ RN . (3.23)

This entails that

v = TyMηu ⇒ v̂ = M−yTη ∀x, η ∈ RN , ∀u ∈ L1. (3.24)

Henceforth by D (or Dj or Dα) we shall denote the operation of derivation in the sense of

distributions.

Lemma 3.3 Let j ∈ {1, ..., N}. If ϕ,Djϕ ∈ L1 then
∫
RN Djϕ(x) dx = 0.

11 In the engineering literature, one says that the function is modulated.
12 For any A ∈ RN

2

, we set (A∗)ij := Aji for any i, j. For any z ∈ C, we denote its complex conjugate by z. We

say that u is radial iff u(Ax) = u(x) for any x and any orthonormal matrix A ∈ RN
2

(i.e., with A∗ = A−1).
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Proof. Let us recall the definition of the bell-shaped function ρ of (1.2), and set

ρn(x) := ρ
(
x/n

)
∀x ∈ RN ,∀n ∈ N. (3.25)

As ρn has compact support, by partial integration∣∣∣ ∫
RN

[
Djϕ(x)

]
ρn(x) dx

∣∣∣ =
∣∣∣ ∫

RN
ϕ(x)Djρn(x) dx

∣∣∣ ≤ 1

n
‖ϕ‖L1 · ‖Djρ‖∞ → 0

as n → ∞. Since ρn(x) → 1 pointwise in RN , by the dominated convergence theorem we then

conclude that ∫
RN

Djϕ(x) dx = lim
n→∞

∫
RN

[
Djϕ(x)

]
ρn(x) dx = 0. 2

• Theorem 3.4 For any multi-index α ∈ NN ,

u,Dα
xu ∈ L1 ⇒ (iξ)αû = (Dα

xu)̂ ∈ C0
b , (3.26)

u, xαu ∈ L1 ⇒ Dα
ξ û = [(−ix)αu]̂∈ C0

b . (3.27)

Proof. In both cases it suffices to prove the equality for any first-order derivative; the general

case then follows by induction.

(i) Let us fix any j ∈ {1, ..., N}. As

Dj [e
−iξ·xu(x)] = −iξje−iξ·xu(x) + e−iξ·xDju(x) ∀x ∈ RN ,

the integrability of u and Dju entails that Dj [e
−iξ·xu(x)] ∈ L1. It then suffices to integrate the

latter equality over RN , and to notice that
∫
RN Dj [e

−iξ·xu(x)] dx = 0 by Lemma 3.3. Finally

(Dα
xu)̂ ∈ C0

b , by Proposition 3.1.

(ii) Let us denote by ej the unit vector in the jth direction. By applying the classical formula
eis−e−is

2i = sin s with s = txj/2, we have

û(ξ + tej)− û(ξ)

t
=

∫
RN

e−i(ξ+tej)·x − e−iξ·x

t
u(x) dx

= −i
∫
RN

e−i(ξ·x+txj/2) sin(txj/2)

t/2
u(x) dx.

Passing to the limit as t→ 0, by the dominated convergence theorem we then get

û(ξ + tej)− û(ξ)

t
→ −i

∫
RN

e−iξ·xxju(x) dx = −i(xju)̂(ξ) ∀ξ.

By Proposition 3.1, this is an element of C0
b . 2

Let us define the operators

(Xu)(x) = ixu(x), (Ξu)(ξ) = iξu(ξ), ∀x, ξ ∈ RN , ∀u ∈ L1. (3.28)

(3.26) and (3.27) then read

u,Dα
xu ∈ L1 ⇒ Ξαû = (Dα

xu)̂ ∈ C0
b , (3.29)

u, xαu ∈ L1 ⇒ Dα
ξ û = [(−X)αu]̂∈ C0

b . (3.30)
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Corollary 3.5 Let m ∈ N0.

(i) If Dα
xu ∈ L1 for any α ∈ NN0 with |α| ≤ m, then (1 + |ξ|)mû(ξ) ∈ L∞.

(ii) If (1 + |x|)mu ∈ L1, then û ∈ Cm and Dαû ∈ L∞ for any α. [Ex]

In other terms:

(i) the more u is regular, the faster |û| decreases at infinity;

(ii) the faster |u| decreases at infinity, the more û is regular.

Examples. (i) For any A > 0, if u = χ[−A,A], then û(ξ) =
√

2/π sin(Aξ)
ξ . [Ex] 13

(ii) We claim that

u(x) = exp(−a|x|2) ∀x ∈ RN ⇒
û(ξ) = (2a)−N/2 exp(−|ξ|2/(4a)) ∀ξ ∈ RN .

(3.31)

Let us first prove this statement in the case of a = 1/2 and N = 1. 14 As Dxu = −xu for any

x ∈ RN ,

iξû(ξ)
(3.26)

= D̂xu(ξ) = −̂xu(ξ)
(3.27)

= −iDξû(ξ),

that is, Dξû = −ξû for any ξ ∈ RN . On the other hand, by the classical Poisson formula∫
R exp(−y2) dy =

√
π, for N = 1

û(0) = (2π)−1/2

∫
e0e−x

2/2 dx = 1.

As u(0) = 1, we see that û solves the same Cauchy problem as u. Therefore for N = 1

u(x) = exp(−x2/2) ∀x ∈ R ⇒ û(ξ) = exp(−ξ2/2) ∀ξ ∈ R. (3.32)

For N > 1 and still for a = 1/2, u(x) = exp(−|x|2/2) =
∏N
j=1 exp(−x2

j/2). Therefore

û(ξ) = (2π)−N/2
∫
e−iξ·xe−|x|

2/2 dx = (2π)−N/2
∫
...

∫
e
∑N
j=1(−iξjxj+x2j/2) dx1...dxN

=
N∏
j=1

{
(2π)−1/2

∫
e−iξjxje−x

2
j/2 dxj

}
(3.32)

=
N∏
j=1

e−ξ
2
j /2 = e−|ξ|

2/2 ∀ξ ∈ RN .

This concludes the proof of (3.31) for a = 1/2. (3.31) then follows from (3.20).

The next theorem mimics a property that we saw for Fourier series.

Theorem 3.6 (Riemann-Lebesgue theorem) For any u ∈ L1, û is uniformly continuous in

RN , and û(ξ)→ 0 as |ξ| → +∞.

13 Defining the cardinal sinus function

sinc v :=
sin v

v
∀v ∈ R,

this also reads û(ξ) = A
√

2/π sinc (Aξ). This function is often used in applications.
14A different proof of this result is based on integration along paths in the complex plane.
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Proof. For any u ∈ L1, there exists a sequence {un} in D such that un → u in L1. By part (i) of

Corollary 3.5, ûn(ξ) → 0 as |ξ| → +∞. The same holds also for û, since ûn → û uniformly in RN
by Proposition 3.1. 15 As û is continuous, it is then uniformly continuous. 2

Remark. This theorem entails that, for any measurable Ω,∫
RN

ein·xu(x) dx→ 0 as n→∞,∀u ∈ L1(Ω). (3.33)

This is easily checked by extending u to RN with vanishing value outside Ω. Thus ein·x → 0 weakly

star in L∞(Ω).

• Theorem 3.7 (Parseval) The formal adjoint of F coincides with F itself, that is,∫
RN

û v dx =

∫
RN

u v̂ dx ∀u, v ∈ L1. (3.34)

Moreover,

u∗v ∈ L1 , and (u∗v)̂ = (2π)N/2û v̂ ∀u, v ∈ L1. (3.35)

Proof. By the theorems of Tonelli and Fubini, for any u, v ∈ L1∫
RN

û(y)v(y) dy = (2π)−N/2
∫∫

RN×RN
e−iy·xu(x)v(y) dx dy =

∫
RN

u(y)v̂(y) dy.

On the other, by the change of integration variable z = x− y,

(u∗v)̂(ξ) = (2π)−N/2
∫∫

RN×RN
e−iξ·xu(x− y)v(y) dx dy

= (2π)−N/2
∫
RN

e−iξ·zu(z) dz

∫
RN

e−iξ·yv(y) dy

= (2π)N/2û(ξ)v̂(ξ). 2

Next we present the inversion formula for the Fourier transform. First, we introduce the so-called

conjugate Fourier transform:

F̃(v)(x) := (2π)−N/2
∫
RN

eiξ·xv(ξ)dξ ∀v ∈ L1, ∀x ∈ RN . (3.36)

This operator differs from F just in the sign of the imaginary unit. Obviously, F̃v = F v̄ for any

v ∈ L1. Clearly the properties of F̃ are mimic those of F .

Theorem 3.8 For any u ∈ L1 ∩ C0
b , if û ∈ L1 then

u(x) = [F̃(û)](x) ∀x ∈ RN . (3.37)

15 Here is an alternative argument. By direct evaluation of the integral one may check that the assertion holds for
the characteristic function of any N -dimensional interval [a1, b1]× · · · × [aN , bN ]. It then suffices to approximate u in
L1 by a sequence of finite linear combinations of characteristic functions of N -dimensional intervals.
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Proof. Let us set v(x) := exp(−|x|2/2) for any x ∈ RN . By the Tonelli and Fubini theorems, we

have ∫
RN

û(ξ)v(ξ)eiξ·x dξ = (2π)−N/2
∫∫

RN×RN
u(y)e−iξ·yv(ξ)eiξ·x dy dξ

=

∫
RN

u(y)v̂(y − x) dy =

∫
RN

u(x+ z)v̂(z) dz ∀x ∈ RN .

Let us now replace v(ξ) by vε(ξ) := v(εξ), for any ε > 0. By (3.20), v̂ε(z) = ε−N v̂(ε−1z); by a

further change of variable of integration, we then get∫
RN

û(ξ)v(εξ)eiξ·x dξ =

∫
RN

u(x+ εy)v̂(y) dy ∀x ∈ RN .

As u and v are continuous and bounded, by the dominated convergence theorem we may pass to

the limit under integral as ε→ 0. We thus get

v(0)

∫
RN

û(ξ)eiξ·x dξ = u(x)

∫
RN

v̂(y) dy. (3.38)

On the other hand, by (3.31)∫
RN

v̂(y) dy =

∫
RN

exp(−|y|2/2) dy =

(∫
R

exp(−s2/2) ds

)N
= (2π)N/2.

As v(0) = 1, (3.38) then yields (3.37). 2

Remarks. (i) By Proposition 3.1, for the above argument the regularity assumptions of Theo-

rem 3.8 are actually needed, as ū = F
(
û
)
. However, by a more refined argument one might show

that (3.37) holds under the only hypotheses that u, û ∈ L1. (Of course, a posteriori one then gets

that u, û ∈ C0
b .)

(ii) By Theorem 3.8, F(u) ≡ 0 only if u ≡ 0; hence the Fourier transform L1 → C0
b is injective.

Under the assumptions of this theorem, we also have

̂̂u(x) = ū(−x) ∀x ∈ RN . (3.39)

The Fourier-Laplace transform. This is the extension of the Fourier transform to holomorphic

functions of several complex variables. 16 Its existence requires strong restrictions on the behaviour

of u(x) as |x| → +∞.

For any z ∈ CN , let us set |z| =
(∑N

i=1 |zi|2
)1/2

and Im(z) = (Im(z1), ..., Im(zN )) ∈ RN . By

B(0, R) we still denote the ball of RN with center the origin and radius R.

Theorem 3.9 (Holomorphy) If u ∈ L1 and eλ|x|u ∈ L1 for some λ > 0, then F(u) can be

extended to a (necessarily unique) holomorphic function û : (R× iB(0, λ))N → C. 17

16 The reason of the denomination of Fourier-Laplace transform will be clear after introducing the Laplace transform
in the next chapter.

17 This means that û is separately holomorphic with respect to each variable.
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Proof. Here we assume that N = 1; however the argument is easily extended to any N . It suffices

to prove that

û(z + h)− û(z)

h
=

∫
e−i(z+h)·x − e−iz·x

h
u(x) dx ∀z ∈ R× iB(0, λ) (3.40)

converges as h→ 0 in C. Defining M(z) := supx∈R |x|e−|x|[λ−Im(z)]/2 (< +∞), a direct computation

shows that ∣∣∣e−i(z+h)·x − e−iz·x

h

∣∣∣ =
∣∣∣e−iz·x∣∣∣ ∣∣∣e−ih·x − 1

h

∣∣∣
≤ e|Im(z)| |x||x| sup

t∈[0,1]
etIm(h)|x| ≤M(z)eλ|x| ∀z ∈ R× iB(0, λ). [Ex]

(3.41)

The modulus of the integrand of (3.40) is thus dominated by M(z)eλ|x||u(x)| ∈ L1, so that one

may pass to the limit in (3.40). 2

Remark. Theorem 3.4 and other results also hold for the Fourier-Laplace transform û in its

domain of holomorphy, A. In particular,

u,Dα
xu ∈ L1 ⇒ (iz)αû(z) = (Dα

xu)̂(z) ∀z ∈ A, (3.42)

u, xαu ∈ L1 ⇒ Dα
z û(z) = [(−ix)αu] (̂z) ∀z ∈ A. (3.43)

The next result assumes that the support of u is bounded, and provides an estimate on the growth

at infinity of û and of its derivatives.

Proposition 3.10 Let u ∈ L1 and suppu ⊂ B(0, R) for some R > 0. F(u) can then be extended

to a (necessarily unique) holomorphic function û : CN → C such that

|Dαû(z)| ≤ (2π)−N/2R|α|eR|Im(z)|‖u‖L1 ∀z ∈ CN , ∀α ∈ NN . (3.44)

Proof. By Theorem 3.10, û is holomorphic on the whole CN . By (3.43),

|Dαû(z)| = (2π)−N/2
∣∣∣ ∫ (−ix)αe−iz·xu(x) dx

∣∣∣
≤ (2π)−N/2

∫
B(0,R)

|(−ix)α||e−iz·x||u(x)| dx

≤ (2π)−N/2R|α|eR|Im(z)|‖u‖L1 ∀z ∈ CN .2

(3.45)

The next classical theorem provides a necessary and sufficient condition for the existence of the

holomorphic extension of the Fourier transformed function.

Theorem 3.11 (Paley-Wiener) Let u ∈ L1 and R > 0. Then the following two conditions are

equivalent:

(i) u ∈ C∞
(
RN
)

and suppu ⊂ B(0, R);

(ii) F(u) can be extended to a (necessarily unique) holomorphic function û : CN → C such that

∀m ∈ N, ∃C > 0 : ∀z ∈ CN |û(z)| ≤ C eR|Im(z)|

(1 + |z|)m
. (3.46)
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(The constant C depends on u and m.)

Proof of “(i) ⇒ (ii)”. By condition (i), for any α ∈ NN , u,Dα
xu ∈ L1. By (3.42), then

|zα||û(z)| = (2π)−N/2
∣∣∣ ∫

B(0,R)
e−iz·xDαu(x) dx

∣∣∣ ≤ (2π)−N/2eR|Im(z)|‖Dαu‖L1 ∀z ∈ CN .

Therefore, for any m ∈ N there exists a constant C > 0 (which will depend on u and m) such that

(1 + |z|)m|û(z)| ≤ CeR|Im(z)| ∀z ∈ CN .[Ex]2

Overview of the Fourier transform in L1. We defined the classic Fourier transform F : L1 →
C0
b and derived its basic properties. In particular we saw the following:

(i) F transforms partial derivatives to multiplication by powers of the independent variable (up

to a multiplicative constant) and conversely. This is at the basis of the application of the Fourier

transform to the study of linear partial differential equations with constant coefficients, that we

shall outline ahead.

(ii) F establishes a correspondence between the regularity of u and the order of decay of û at

∞, and conversely between the order of decay of u at∞ and the regularity of û. In the limit case of

a compactly supported function, the Fourier transform may be extended to an entire holomorphic

function CN → C.

(iii) F transforms the convolution of two functions to the product of their transforms (the

converse statement may fail, because of summability restrictions).

(iv) Under suitable regularity restrictions, the inverse transform exists, and has an integral

representation analogous to that of the direct transform.

The properties of the two transforms are then similar; this accounts for the duality of the state-

ments (i) and (ii). However the assumptions are not perfectly symmetric; in the next section we

shall see a different functional framework where this is remedied.

The inversion formula (3.37) also provides an interpretation of the Fourier transform. (3.37)

represents u as a weighted average of the harmonic components x 7→ eiξ·x. For any ξ ∈ RN , û(ξ) is

the amplitude of the component having vector frequency ξ (that is, frequency ξi in each direction

xi).
18 Therefore any function which fulfills (3.37) may equivalently be represented by specifying

either the value u(x) at a.e. points x ∈ RN , or the amplitude û(ξ) for a.e. frequencies ξ ∈ RN .

The analogy between the Fourier transform and the Fourier series is obvious, and will be briefly

discussed at the end of the next section.

4 Extensions of the Fourier Transform

Fourier transform of measures. The Fourier transform may be extended to any finite complex

Borel measure µ on RN . Formally, this simply corresponds to replacing f(x) dx by dµ(x) in (3.4).

This is called the Fourier-Stieltjes transform. Most of the previously established properties

hold also in this more general set-up. For instance, transformed functions are still elements of C0
b

and fulfill the properties of transformation of derivatives and multiplication by a power of x. The

Riemann-Lebesgue Theorem 3.6) instead fails: e.g., δ̂0(ξ) = (2π)N/2, which does not vanish as

|ξ| → +∞.

18 It is usual to use the term frequency, but ξ is rather the angular frequency (expressed in radians).
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Fourier transform in S. For any u ∈ D, û is holomorphic by Theorem 3.11. Hence û ∈ D only if

û ≡ 0, namely u ≡ 0 by Theorem 3.8. Fourier transform thus does not map D to itself. This means

that the set of the frequencies of the harmonic components of any non-identically vanishing u ∈ D
is unbounded. In other terms, any non-identically vanishing u ∈ D has harmonic components of

arbitrarily large frequencies. This induced L. Schwartz to introduce the space of rapidly decreasing

functions S, and to extend the Fourier transform to this space and to its dual. Next we review the

tenets of that theory. We shall operate several identifications, omitting to display restrictions.

Proposition 4.1 (The restriction of) F maps S to S, is continuous, and is invertible: F−1 = F̃ .

Moreover, for any u, v ∈ S,

(iξ)αû = (Dα
xu)̂, (4.1)

Dα
ξ û = [(−ix)αu] ,̂ (4.2)∫
RN

û v dx =

∫
RN

u v̂ dx, (4.3)

u∗v ∈ S, (u∗v)̂ = (2π)N/2û v̂ in S, (4.4)

uv ∈ S , (uv)̂ = (2π)−N/2û∗v̂ in S. (4.5)

The conjugate Fourier transform F̃ fulfills analogous properties, with −i in place of i.

Proof. The first part is easily checked by repeated use of the Leibniz rule, because of the stability

of the space S w.r.t. multiplication by any polynomial and w.r.t. application of any differential

operator (with constant coefficients). [Ex] Actually, S is the smallest space that contains L1 and

has these properties.

The formulas (4.1)—(4.1) are just particular cases of (3.26), (3.27), (3.34), since S ⊂ L1.

It is easily checked that uv, u∗v, (u∗v)̂, û∗ v̂ ∈ S. The equality of (4.4) is a direct extension of

(3.35). By writing (3.35) with û and v̂ in place of u and v, and F̃ in place of F , we have

F̃(û∗v̂) = (2π)N/2F̃(û) F̃(v̂) = (2π)N/2u v.

By applying F to both members of this equality, the equality of (4.5) follows.

The final statement is obvious. 2

Remark. The identity of (4.5) extends (3.35), that we proved in L1; on the other hand the identity

of (4.5) is meaningless for u, v ∈ L1.

Fourier transform in S′. Let us first define Fτ : S ′ → S ′ to be the transpose operator of

F|S : S → S, that is:

〈FτT, v〉 := 〈T,Fv〉 ∀v ∈ S, ∀T ∈ S ′. (4.6)

The conjugate transform F̃τ is similarly extended to S ′ by transposition. Actually, any results that

holds for F may be reproduced in terms of F̃τ .

• Theorem 4.2 (i) The operator Fτ : S ′ → S ′ is linear, sequentially continuous, and is the unique

continuous extension of F to S ′.
(ii) The formulas of Proposition 3.2 and Theorem 3.4 hold for Fτ in S ′ without any restriction.

(iii) The operator Fτ is invertible in S ′ and (Fτ )−1 = F̃τ .

27



Proof. By 4.3,

〈Fτu, v〉 = 〈u,Fv〉 =

∫
u(x)Fv(x) dx =

∫
Fu(x) v(x) dx ∀u, v ∈ S. (4.7)

Thus Fτ |S = F|S . As S is sequentially dense in S ′, we infer part (i).

Part (ii) is easily derived from the analogous statements for S via transposition. For instance,

we retrieve (3.26) in S ′ as follows:

S′〈(iξ)αT̂ , v〉S = S′〈T̂ , (iξ)αv〉S = S′〈T, [(iξ)αv]̂ 〉S
(3.27)

= S′〈T, (−D)αv̂〉S = S′〈DαT, v̂〉S = S′〈(DαT )̂, v〉S ∀T ∈ S ′,∀v ∈ S.

(Here we applied (3.27) exchanging the roles of x and ξ: [(iξ)αv(x)]̂ (ξ) = (−Dx)αv̂(x)). Thus,

(iξ)αT̂ = (DαT ) .̂

As we already pointed out, (F|S)−1 = F̃ |S . As S is sequentially dense in S ′, part (iii) then

follows. 2

On the basis of the foregoing result, henceforth we shall write F in place of Fτ (omitting the

transposition) also in S ′.
Next we extend to E ′ the Fourier-Laplace transform of the previous section. First, we define this

transformed function on RN ; afterwards in Theorem 4.4 we extend it to a holomorphic function

defined on the whole CN .

Theorem 4.3 For any T ∈ E ′,

T̂ (ξ) = E ′〈T, e−ix·ξ〉E ∀ξ ∈ RN . (4.8)

* Proof. For any n ∈ N, let us define the mollifier ρn as in (3.25), and set (T ∗ ρn)(x) :=

〈Ty, ρn(x− y)〉 for any x ∈ RN . (The index y indicates that T acts on the variable y; on the other

hand here x is just a parameter.) By testing on a function of E , it is easily checked that T ∗ρn → T

in E ′, hence also in S ′ as E ′ ⊂ S ′ with continuous and sequentially dense injections. Therefore

(T ∗ ρε)̂ → T̂ in S ′. (4.9)

On the other hand, as T ∗ ρn ∈ E and
∫
RN ρn(x) dx = 1, we have

(T ∗ ρn)̂(ξ) = (2π)−N/2
∫
RN

e−iξ·x(T ∗ ρn)(x) dx

= (2π)−N/2
∫
RN×RN

e−iξ·x〈Ty, ρn(x− y)〉 dx dy

= (2π)−N/2〈Ty, e−iξ·y
∫
RN

e−iξ·(x−y)ρn(x− y) dx〉 = 〈Ty, e−iξ·y〉ρ̂n(ξ),

and this is a holomorphic function of ξ. As ε→ 0, ρ̂n(ξ)→ 1 uniformly on any compact subset of

RN . Therefore

(T ∗ ρn)̂(ξ) = 〈Ty, e−iξ·y〉ρ̂n(ξ)→ 〈Ty, e−iξ·y〉 in S ′.

By (4.9) we then conclude that T̂ (ξ) = 〈Ty, e−iξ·y〉 for any ξ ∈ RN , and this function is holomorphic.

2

The next result concerns tempered distributions that have a holomorphic Fourier-Laplace trans-

form (after extension to the whole CN ).
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* Theorem 4.4 (Paley-Wiener-Schwartz) Let T ∈ S ′ and R > 0. Then supp (T ) ⊂ B(0, R)

iff F(T ) may be extended to a holomorphic function T̂ : CN → C such that

∃m ∈ N0,∃C > 0 : ∀z ∈ CN |T̂ (z)| ≤ C(1 + |z|)meR|Im(z)|. [] (4.10)

(Here C depends on m and T .)

Fourier transform in L2. The operator F : S ′ → S ′ is the point of arrival of our extensions of the

Fourier transform, as S ′ includes all other classes of functions on which we define this transform.

Nevertheless it will be useful to know when the transformed function of a function is a function.

Next we show that (the restriction of) F maps L2 to itself and is an isometric isomorphism.

• Theorem 4.5 (Plancherel) The Fourier transform may be extended to L2:

u ∈ L2 ⇔ û ∈ L2 ∀u ∈ S ′. (4.11)

The restriction of F to L2 is an isometry, with inverse F̃ :∫
RN

û¯̂v dx =

∫
RN

uv̄ dx, ‖û‖L2 = ‖u‖L2 ∀u, v ∈ L2. (4.12)

Moreover, for any u ∈ L2,

(2π)−N/2
∫

]−R,R[N
e−iξ·xu(x) dx → û(ξ) in L2, as R→ +∞. (4.13)

Therefore this integral also converges in measure on all bounded subsets of RN ; it also converges

a.e., as R→ +∞ along a suitable sequence which depends on u. 19

Proof. Denoting the inverse Fourier transform by the tilde, it is easily checked that ̂̄̂v = ̂̄̃v = v̄

for any v ∈ S. Hence ∫
RN

û¯̂v dx
(3.34)

=

∫
RN

û̄̂v dx =

∫
RN

uv̄ dx ∀u, v ∈ S.

F
∣∣
S is thus a surjective isometry with respect to the L2-metric. As S ⊂ L2 with continuous and

dense injection, the same holds for F
∣∣
L2 .

In order to prove (4.13), let us set χR = χ]−R,R[N for any R > 0, and notice that uχR ∈ L1 ∩ L2

and uχR → u in L2 as R→ +∞. By (4.12) then

(2π)−N/2
∫

]−R,R[N
e−iξ·xu(x) dx = (uχR)̂ → û in L2. 2

Proposition 4.6 For any u ∈ L1
loc ∩ S ′,

(2π)−N/2
∫

]−R,R[N
e−iξ·xu(x) dx → û(ξ) in S ′, as R→ +∞. (4.14)

19 This is reminiscent of the principal value of Cauchy, but does not coincide with it.
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Proof. Let us denote by χR the characteristic function of the N -dimensional interval ]−R,R[N ,

and notice that (uχR)̂(ξ) = (2π)−N/2
∫
e−iξ·xu(x)χR dx, for a.e. ξ. As uχR → u in S ′ as R→ +∞

the continuity of F in S ′ yields (4.14). 2

Remark. One may thus generalize the inversion Theorem 3.8 to the whole L2.

Lemma 4.7 For any p ∈ [1, 2], any function u ∈ Lp may be written as the sum of a function of

L1 and one of L2, i.e.,

Lp ⊂ L1 + L2 ∀p ∈ [1, 2]. (4.15)

Proof. Setting χ := 1 where |u| ≥ 1 and χ := 0 elsewhere,

uχ ∈ L1, u(1− χ) ∈ L2, u = uχ+ u(1− χ) ∀u ∈ Lp.2 (4.16)

(Similarly one can show that Lp ⊂ Lq + Lr whenever 1 ≤ q < p < r ≤ ∞.)

As F : L1 → L∞ and F : L2 → L2, because of this lemma

F(u) = F(uχ) + F(u(1− χ)) ∈ L∞ + L2 ∀u ∈ Lp,∀p ∈ [1, 2] . (4.17)

In this case F(u) thus is a regular distribution, although it may admit no integral representation.

This is made more precise by the next result.

Theorem 4.8 (Hausdorff-Young) Let p ∈ [1, 2], p′ := p/(p− 1) if p > 1, and p′ = ∞ if p = 1.

Then (the restriction of) F is a linear and continuous operator Lp → Lp
′
, and

‖û‖Lp′ ≤ ‖u‖Lp ∀u ∈ Lp. (4.18)

Proof. The restriction of F : S ′ → S ′ maps L1 to L∞ and L2 to L2, and is continuous in these

spaces. We may thus regard F as an operator L1 +L2 → L∞+L2. The Riesz-Thorin Theorem 2.4

then entails the thesis. 2

Remarks. (i) Because of the symmetry between the definition of the direct and inverse Fourier

transform, see formulas (3.4) and (3.37), the results that we established for F in S and in S ′ hold

also for F−1, which is defined on the whole S ′. In particular this applies to Theorems 4.1 and 4.5.

(ii) Next we show that F maps Lp to Lq only if q = p′. Let u ∈ Lp be such that F(u) ∈ Lq. For

any λ > 0, setting uλ(x) := u(λx) for any x, by (3.20) we have F(uλ) = λ−NF(u)1/λ. Hence, for

any nonidentically vanishing u ∈ S,

‖F(uλ)‖Lq
‖uλ‖Lp

= λ−N
‖F(u)1/λ‖Lq
‖uλ‖Lp

= λN(−1+1/q+1/p) ‖F(u)‖Lq
‖u‖Lp

, (4.19)

and the left side is uniformly bounded w.r.t. λ iff q = p′.

Overview of the extensions of the Fourier transform. At first we noticed that the Fourier

transform (3.5) has an obvious extension for any complex Borel measure µ; loosely speaking, this is

just defined by replacing u(x)dx by dµ in the definition (3.4). By the Paley-Wiener theorem, D is

not stable under application of the Fourier transform, so that F cannot be extended by continuity

to the whole D′. However, F maps the Schwartz space S to itself, and this allowed us to extend
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F to S ′ by transposition. We also saw that F is an isometry in L2 (Plancherel theorem), that in

this space F admits an integral representation as a principal value, and that F is also linear and

continuous from Lp to Lp/(p−1), for any p ∈ ]1, 2[.

Note: The Fourier transform is a homomorphism from the algebra (L1, ∗) to the algebra (L∞, ·)
(here “·” stands for the product a.e.), and is an isomorphism between the algebras (S, ∗) and (S, ·);
cf. (3.35).

ARed: Finally, ..... the Fourier series arise as Fourier transforms of periodic functions.

4.1 Exercises

— Evaluate the Fourier transform of the Heaviside function.

5 Fourier Transform and Differential Equations

Let a0, ..., am ∈ C (am 6= 0), f : R→ C be a given function, and consider the linear ODE

P (D)u(t) :=
m∑
n=0

anD
nu(t) = f(t) t ∈ R. (5.20)

If we confine ourselves to functions, it is especially convenient to assume that f , u and its (distri-

butional) derivatives up to order m are elements of L2. By applying the Fourier transform to both

members of (5.20), we get

P (D)u = f ⇔ P (iξ)û = f̂ ; (5.21)

the differential equation is thus equivalent to the algebraic equation

(
P (iξ)û(ξ) =

) m∑
n=0

an(iξ)nû(ξ) = f̂(ξ) ∀ξ ∈ R.

If (
P (iξ) =

) m∑
n=0

an(iξ)n 6= 0 ∀ξ ∈ R, (5.22)

then the equation (5.20) is equivalent to

û(ξ) =
f̂(ξ)

P (iξ)
∀ξ ∈ R. (5.23)

The second member of (5.23) is Fourier-antitransformable, since it is an element of S ′ because of

(5.22). At this point it suffices to invert the Fourier transform in L2; (5.23) is then equivalent to

u = F−1(û) = F−1

(
f̂(ξ)

P (iξ)

)
. (5.24)

Because of the Parseval theorem, this also reads

u = (2π)1/2F−1

(
1

P (iξ)

)
∗ F−1(f̂) = (2π)1/2F−1

(
1

P (iξ)

)
∗ f. (5.25)
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This is the unique solution of the equation (5.20) in L2, under the hypothesis (5.22). For instance,

for any η ∈ R\{0}, the equation Du−ηu = 0 is transformed to (iξ−η)û = 0. As P (iξ) = iξ−η 6= 0

for any ξ ∈ R, this homogenous equation has the unique solution u = eηt ∈ D′ \ S ′.
If the condition (5.22) is not fulfilled, the solution of the equation P (D)u = f need not be unique

in D′, and is determined up to the sum of any solution u ∈ D′ of the homogeneous equation

P (D)u = 0. E.g., this occurs for P (D) = D2.

Remarks. (i) Notice that here we set the equation on the whole R, without boundary conditions.

In this case the solution does not include any additive constant, as the boundary conditions are

actually surrogated by the L2-integrability. 20

(ii) The above procedure is easily extended to any PDE of the form

P (D)u(x) :=
∑
|α|≤m

aαD
αu(x) = f(x) x ∈ RN (5.26)

(where by α we denote a multi-index of NN ), provided that
∑
|α|≤m aαξ

α 6= 0 for any ξ ∈ RN .

(iii) In the next chapter the Cauchy problem will be studied on the whole line via the Laplace

transform. 2

The fundamental solution. 21 The differential equation (5.20) may be addressed from the point

of view of system theory. The (here assumed unique) solution is interpreted as the response of a

linear system that is defined by the differential operator. The system is thus characterized by the

inverse operator L : f 7→ u. As the coefficients {an} do not depend on t, this operator is invariant

by time shifts.

Next let us go beyond functions, and assume that f, u ∈ S ′. If f = δ0 in (5.25), then the solution

h = Lu represents the response of a system to δ0 (the unit pulse at the origin). In the theory of

linear differential equations (ODEs or PDEs) this is called a fundamental solution, whereas in the

theory of linear systems the term impulsive response in time is used:

h := (2π)N/2F−1

(
1

P (iξ)

)
∗ δ0 = (2π)N/2F−1

(
1

P (iξ)

)
. (5.27)

[F(h)](ξ) = (2π)N/2/P (iξ) is then called the impulsive response in frequency (or just the response

function). 22 We may actually rewrite the solution of the equation (5.20) in the form

u = h ∗ f with
m∑
n=0

anD
nh = δ0. (5.28)

Distributional solutions. Because of the fundamental theorem of algebra, the characteristic

equation (
P (iξ) =

) m∑
n=0

an(iξ)n = 0

20 This may be somehow understood by recalling that the linear space of continuous functions R→ C with compact
support is dense in L2...

21 These notions will be revisited in the chapter devoted to filters.
22 This terminology is typical of the theory of linear systems, that we shall briefly illustrate ahead. The term

fundamental solution is used in mathematical analysis; in this set-up whenever the null value is assumed either at
the boundary or at infinity, one may also speak of a Green function.
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has exactly m (possibly repeated) complex roots. Let us denote by {ξj : j = 1, ..., `} the distinct

roots, and by rj the multiplicity of ξj for any j; thus ` ≤ m and r1 + ...+ r` = m. Therefore

P (iξ) = am
∏̀
j=1

(iξ − iξj)rj ∀ξ ∈ C,

whence

P (D) = am
∏̀
j=1

(D − iξj)rj .23

As

(D − iξj)rj (tk−1eiξjt) = 0 for k = 1, ..., rj , j = 1, ..., `,

the roots {ξj : j = 1, ..., `} are associated to a linearly independent family of m solutions:

uj,k(t) = tk−1eiξjt (k = 1, ..., rj , j = 1, ..., `)

of the homogeneous differential equation
∑m

n=0 anD
nu(t) = 0. For each j,{

ξj ∈ R ⇒ uj,1, ..., uj,rj ∈ S ′

ξj 6∈ R ⇒ uj,1, ..., uj,rj ∈ D′ \ S ′
for j = 1, ..., `. (5.29)

We shall distinguish two cases:

(i) If the condition (5.22) is fulfilled, defining the function h as in (5.27) we conclude that

h is the unique fundamental solution of the equation (5.20) in S ′;

hence u = h ∗ f is the unique solution of the equation (5.20) in S ′, ∀f ∈ S ′.
(5.30)

(ii) If instead
(
P (iξ̃) =

)∑m
n=0 an(iξ̃)n = 0 for some ξ̃ ∈ R, then this root corresponds to the

solution u(t) = eiξ̃t ∈ S ′ of the homogeneous equation (5.20). In this case

the fundamental solution is not unique in S ′;

hence the solution of the nonhomogenous (5.20) also fails to be unique in S ′.
(5.31)

Examples. Let us fix any k > 0 and consider two differential equations

u− k2u′′ = f(t), u+ k2u′′ = f(t). (5.32)

These equations are respectively associated to the operators

P1(D) := I − k2D2, P2(D) := I + k2D2 (I: operatore identità),

which in turn correspond to the characteristic polynomials

P1(iξ) = 1 + k2ξ2, P2(iξ) = 1− k2ξ2 (ξ ∈ R).

The hypothesis (5.22) is satisfied by P1(iξ), but not by P2(iξ). The previous analysis may thus

be applied just to the first equation, which therefore has a unique solution in S ′; moreover, the

23 Here iξj stands for iξjI, where I is the identity operator, and the product represents the composition product.
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second equation has more than one solution in S ′. For the latter equation, mathematically it is

more appropriate to address the initial-value problem rather than the problem on the whole R,

and use the Laplace transform, as we shall see in the next section. This mathematical aspect also

reflects typical applications.

This discussion can be extended to systems of linear ODEs, and also to some nonlinear problems.

The extension to PDEs is also viable, although more complex.

5.1 Exercises

1. Generalize the analysis of the ODEs (5.32) to the PDEs

u−∆u = f, u+ ∆u = f in RN . (5.33)
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6 Uncertainty Principle

Doppler theorem and uncertainty principle. (3.20) yields the following scaling formula (which

is also referred to as the Doppler theorem):

va(x) = a−N/2u(x/a) ⇒ v̂a(ξ) = aN/2û(aξ) ∀a > 0,∀u ∈ L1. (6.1)

(This scaling is such that ‖va‖L2 and ‖v̂a‖L2 are independent of a.)

For instance, we shall see that the Gaussians function u(x) = e−|x|
2/2 corresponds to û(ξ) =

e−|ξ|
2/2 (see (3.31)). By (6.1), va(x) = a−N/2e−|x/a|

2/2 then corresponds to v̂a(ξ) = aN/2e−|aξ|
2/2.

All of these functions have the L2-norm equal to 1. By varying a, we see that the more va is spread,

the less v̂a is spread; and conversely, the less va is spread, the more v̂a is spread.

This behaviour is representative of a general result, which now we briefly illustrate.

Theorem 6.1 (Heisenberg Uncertainty Principle) Let u ∈ L2. By the Plancherel Theorem,

E := ‖u‖2L2 = ‖û‖2L2, so that |u|2/E and |û|2/E are densities of probability. Let us assume that the

respective means m1,m2 and variances σ2
1, σ

2
2 exist and are finite:

m1 =
1

E

∫
t|u|2(t) dt ∈ R, σ2

1 =
1

E

∫
(t−m1)2|u|2(t) dt < +∞, (6.2)

m2 =
1

E

∫
ξ|û|2(ξ) dξ ∈ R, σ2

2 =
1

E

∫
(ξ −m2)2|û|2(ξ) dξ < +∞. (6.3)

Then

σ1σ2 ≥ 1/2. (6.4)

Equality holds if u = va(x) = a−N/2e−|x/a|
2/2, for any a > 0.

Proof. Without loss of generality, we may assume that m1 = m2 = 0. Let us first assume that

u ∈ C∞ with compact support. We known that then∫
ξ2|û(ξ)|2 dξ =

∫
|û′(ξ)|2 dξ =

∫
|u′(t)|2 dt. (6.5)

Notice that

2 Re

∫
tu(t)u′(t) dt =

∫
t
{
u(t)u′(t) + u(t)u′(t)

}
dt =

∫
t
d

dt
|u(t)|2 dt

= t|u(t)|2
∣∣∣t=+∞

t=−∞
− ‖u‖2L2 = −‖u‖2L2

and ∣∣∣Re

∫
tu(t)u′(t) dt

∣∣∣ ≤ ‖tu‖L2‖u′‖L2 = ‖tu(t)‖L2‖ξû(ξ)‖L2(= σ1σ2). (6.6)

The two latter formulae yield

2‖tu(t)‖L2‖ξû(ξ)‖L2 ≥ ‖u‖2L2 . (6.7)

(6.4) thus holds for any u ∈ C∞ with compact support. As this space is dense in L2 and the Fourier

transform is isometric w.r.t. the L2 metric, the thesis follows. 2

If |u|2 is the density of probability of time localization of an event, then |û|2 is the density of

probability of its frequency. The time-frequency resolution of u is represented in the time-frequency
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(t, ξ)-plane (t, ξ) by a rectangular Heisenberg box centered at (t, ξ) = (m1,m2), and with width σa1

(σa2, resp.) along the t-axis (ξ-axis, resp.).

By the Heisenberg inequality σ1σ2 ≥ 1/2, the sharper is the information we have on the time

localization, the rougher is the information we may get on the frequency: time resolution and

frequency resolution thus conflict each other.

For instance, a Dirac measure u = δt0 is the most precise specification of time location; its

Fourier transform is the sinusoid û(ξ) = e−iξt0/
√

2π, which is supported over the whole R, and

thus is completely unlocalized. Dually, a Dirac measure û = δξ0 is the most precise specification of

frequency location; its Fourier antitransform is the sinusoid u(t) = eiξ0t/
√

2π, which is supported

over the whole R, and thus is completely unlocalized.

Remark. For any u ∈ L1 and any a > 0, let us define va as in (6.1) and the standard deviation

σa1 (σa2, resp.) of va (v̂a, resp.) as above. Notice that the product σa1σa2 is independent of a.

Loosely speaking, this scaling is thus consistent with the uncertainty principle.
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