
Distributions and Fourier Transform

This chapter includes the following sections:

1. Distributions.

2. Convolution.

3. Fourier transform of functions.

4. Extensions of the Fourier transform.

5. Fourier transform and ordinary differential equations.

6. Rescaled Fourier transform.

7. The Poisson summation formula.

8. The sampling theorem.

9. The uncertainty principle.

Symbols. • indicates important results. ∗ indicates complements.

[Ex] means that the proof is left as exercise. [] means that the proof is missing.

1 Distributions

The theory of distributions was introduced in the 1940s by Laurent Schwartz, who provided a

thorough functional formulation to previous ideas of Heaviside, Dirac and others, and forged a

powerful tool of calculus. Distributions also offer a solid basis for the construction of Sobolev

spaces, that had been introduced by Sobolev in the 1930s using the notion of weak derivative. These

spaces play a fundamental role in the modern analysis of linear and nonlinear partial differential

equations.

We shall denote by Ω a nonempty domain of RN . The notion of distribution rests upon the idea

of regarding any locally integrable function f : Ω → C as a continuous linear functional acting on

a topological vector space A(Ω) (which must be defined):

Tf (v) :=

∫
Ω
f(x)v(x) dx ∀v ∈ A(Ω). (1.1)

One is thus induced to consider all the functionals of the topological dual A′(Ω) of A(Ω). In

this way several classes of distributions are generated. The space A(Ω) must be so large that the

functional Tf determines a unique f . On the other hand, the smaller is the space A(Ω), the larger

is its topological dual A′(Ω). It happens that there exists a very small space A(Ω), so that A′(Ω)

is very large (actually, this is the largest space used in analysis); the elements of this dual space

are what we shall name distributions.

In this section we outline some basic tenets of this theory, and provide some tools that we will

use ahead.

Test functions. Let Ω be a domain of RN . Let us denote by D(Ω) the space of infinitely

differentiable functions Ω → C whose support is a compact subset of Ω. These are called test

functions.

By the theorem of analytic continuation, the null function is the only analytic function in D(Ω),

since any element of this space vanishes in some open set. By a classical example of Cauchy, the

function

f(x) = e−1/|x|2 ∀x 6= 0, f(0) = 0
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is infinitely differentiable but not analytic. It is then easy to check that the bell-shaped function

ρ(x) :=

{
exp

[
(|x|2 − 1)−1

]
if |x| < 1,

0 if |x| ≥ 1
(1.2)

belongs to D(RN ). By suitably translating ρ and by rescaling w.r.t. x, nontrivial elements of D(Ω)

are easily constructed for any Ω. In particular, for any open neighbourhood of any x0 ∈ Ω contains

the support of a bell-shaped functions.

For any K ⊂⊂ Ω (i.e., any compact subset K of Ω), let us denote by DK(Ω) the space of

the infinitely differentiable functions Ω → C whose support is contained in K. These are linear

subspaces of C∞(Ω), and D(Ω) =
⋃
K⊂⊂ΩDK(Ω). The space D(Ω) will be equipped with the

corresponding inductive-limit topology. 1 Here we shall not study the subtle properties of this

topology: for our purposes, it will suffice to characterize the corresponding notions of bounded

subsets and of convergent sequences.

A subset B ⊂ D(Ω) is bounded in the inductive topology iff it is contained and is bounded in

DK(Ω) for some K ⊂⊂ Ω. This means that

(i) there exists a K ⊂⊂ Ω that contains the support of all the functions of B, and

(ii) supv∈B supx∈Ω |Dαv(x)| < +∞ for any α ∈ NN .

A sequence {un} in D(Ω) converges to u ∈ D(Ω) in the inductive topology iff, for some K ⊂⊂ Ω,

un, u ∈ DK(Ω) ∀n, Dαun → Dαu uniformly in K,∀α ∈ NN .

This means that

(i) there exists K ⊂⊂ Ω that contains the support of any un and of u, and

(ii) supx∈Ω |Dα(un − u)(x)| → 0 for any α ∈ NN . [Ex]

For instance, if ρ is defined as in (1.2) and {an} is a sequence in RN , then the sequence {ρ(·−an)}
is bounded in D(R) iff the sequence {an} is bounded. Moreover ρ(· − an)→ ρ(· − a) in D(RN ) iff

an → a. [Ex]

Distributions. All linear and continuous functionals D(Ω) → C are called distributions; these

functionals form the (topological) dual space D′(Ω). For any T ∈ D′(Ω) and any v ∈ D(Ω) we also

write 〈T, v〉 in place of T (v).

• Theorem 1.1 (Characterization of distributions)

For any linear functional T : D(Ω)→ C, the following properties are mutually equivalent:

(i) T is continuous, i.e., T ∈ D′(Ω);

(ii) T is sequentially continuous, i.e., T (vn)→ 0 whenever vn → 0 in D(Ω);

(iii)

∀K ⊂⊂ Ω,∃m ∈ N, ∃C > 0 : ∀v ∈ D(Ω),

supp(v) ⊂ K ⇒ |T (v)| ≤ C max
|α|≤m

sup
K
|Dαv|. [] (1.3)

1 This is the finest topology among those that make all injections DK(Ω) → D(Ω) continuous. This topology
makes D(Ω) a nonmetrizable locally convex Hausdorff space.

A set A ⊂ D(Ω) is open in this topology iff A ∩ DK(Ω) is open for any K ⊂⊂ Ω.
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If m = mT,K is the smallest integer that fulfills this condition, one says that T has order m on

the compact set K.

* Proof. Obviously (i) entails (ii). Let us prove that (ii) entails (iii). By contradiction, let us

assume that

∃K ⊂⊂ Ω : ∀m ∈ N, ∃vm ∈ DK(Ω) : |T (vm)| > m max
|α|≤m

sup
K
|Dαvm|.

(we have taken C = m). Possibly dividing vm by T (vm), we can assume that T (vm) = 1 for any

m. Hence supK |Dαvm| < 1/m for any α ∈ NN and any m ≥ |α|. Thus vm → 0 in DK(Ω), whence

in D(Ω), although T (vm) does not vanish. This contradicts (ii).

Finally, (iii) entails (ii), since if vn → 0 then supK |Dαv|. This simple argument can be extended

to nets, so that actually (iii) yields (i). 2

Convergence of distributions. We equip the space D′(Ω) with the sequential weak star conver-

gence: for any sequence {Tn} and any T in D′(Ω),

Tn → T in D′(Ω) ⇔ Tn(v)→ T (v) ∀v ∈ D(Ω). (1.4)

This makes D′(Ω) a nonmetrizable locally convex Hausdorff space. []

We can then define a series of distributions as the limit of a partial sum of distributions.

Proposition 1.2 If Tn → T in D′(Ω) and vn → v in D(Ω), then Tn(vn)→ T (v). []

Examples of distributions. (i) For any measurable function f : Ω→ C, the integral functional

Tf : v 7→
∫

Ω
f(x) v(x) dx (1.5)

is a distribution iff f ∈ L1
loc(Ω). [Ex] 2 The mapping f 7→ Tf is injective, so that we can iden-

tify L1
loc(Ω) with a closed subspace of D′(Ω). These distributions are called regular; the other

distributions are called singular.

(ii) Let µ be either a complex-valued Borel measure on Ω, or a positive measure on Ω that is

finite on any K ⊂⊂ Ω. In either case the functional

Tµ : v 7→
∫

Ω
v(x) dµ(x) (1.6)

is a distribution, which is usually identified with µ itself. In particular this applies to continuous

functions.

(iii) The function x 7→ 1/x is not locally integrable in R, and so it is not a distribution. Next we

show that, on the other hand, its principal value (p.v.),

〈p.v.
1

x
, v〉 := lim

ε→0

∫
|x|>ε

v(x)

x
dx ∀v ∈ D(R) (1.7)

2 L1
loc(Ω) is a Fréchet space.
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is a distribution. For any v ∈ D(R) and for any a > 0 such that supp(v) ⊂ [−a, a], by the oddness

of the function x 7→ 1/x we have

〈p.v.
1

x
, v〉 = lim

ε→0+

(∫
ε<|x|<a

v(x)− v(0)

x
dx+

∫
ε<|x|<a

v(0)

x
dx

)
(∫

ε<|x|<a

v(0)

x
dx = 0 as the integrand is an odd function

)
= lim

ε→0+

∫
ε<|x|<a

v(x)− v(0)

x
dx =

∫ a

−a

v(x)− v(0)

x
dx.

(1.8)

This limit exists and is finite, since by the mean value theorem∣∣∣∣ ∫
ε<|x|<a

v(x)− v(0)

x
dx

∣∣∣∣ ≤ 2amax
R
|v′| ∀ε > 0.

By the characterization of Theorem 1.1, we conclude that p.v. 1/x is a distribution.

Note that the principal value is different from other notions of (Remann-type) generalized integral.

(iv) For any y ∈ Ω (⊂ NN ) the Dirac mass δy : v 7→ v(y) is a distribution. [Ex] In particular

δ0 ∈ D′(RN ).

(v) For any sequence {xn} in Ω, the series of Dirac masses
∑∞

n=1 δxn/n
2 is a distribution. [Ex]

(vi) More generally, if µ is a Radon measure (i.e. a Borel measure that is finite on compact subsets

of Ω), then v 7→
∫
v dµ is a distribution.

(vii) The series T =
∑∞

n=1 δxn is a distribution of D′(Ω) iff any K ⊂⊂ Ω contains at most a

finite number of points of the sequence {xn}. [Ex] Indeed, if this condition is fulfilled, then for any

v ∈ D(Ω), T (v) is a finite sum; moreover, the condition (1.3) is promptly checked. On the other

hand, if that condition fails, then there exists v ∈ D(Ω) such that v(xn) = 1 for any n, so that T (v)

diverges. So for instance (for N = 1)

∞∑
n=1

1

n
δn 6∈ D′(R), but

∞∑
n=1

1

n
δn ∈ D′(R \ {0}),

∞∑
n=1

(−1)n
1

n
δn ∈ D′(R).

Differentiation of distributions. We define the multiplication of a distribution by a C∞-function

and the differentiation 3 of a distribution via transposition:

〈fT, v〉 := 〈T, fv〉 ∀T ∈ D′(Ω), ∀f ∈ C∞(Ω), ∀v ∈ D(Ω), (1.9)

〈D̃αT, v〉 := (−1)|α|〈T,Dαv〉 ∀T ∈ D′(Ω), ∀v ∈ D(Ω),∀α ∈ NN . (1.10)

Via the characterization (1.3), it may be checked that D̃αT is a distribution, and that the operator

D̃α is continuous in D′(Ω). [Ex] Indeed, defining mT,K as above,

mfT,K = mT,K , m
D̃αT,K

≤ mT,K + |α| ∀K ⊂⊂ Ω.

Thus any distribution has derivatives of any order. More specifically, for any f ∈ C∞(Ω), the

operators T 7→ fT and D̃α are linear and continuous in D′(Ω). [Ex]

3In this section we denote the distributional derivative by D̃α; we denote the classical derivative, i.e. the pointwise
limit of the difference quotient, by Dα, whenever the latter exists.

4



The definition (1.10) is consistent with partial integration: for any f ∈ L1
loc(Ω) such that D̃αf ∈

L1
loc(Ω), (1.10) indeed reads∫

Ω
[Dαf(x)]v(x) dx = (−1)|α|

∫
Ω
f(x)Dαv(x) dx ∀v ∈ D(Ω).

(Here no boundary term occurs as the support of v is compact.) Similarly, multiplication of a

distribution by a C∞-function is consistent with the multiplication of functions of L1
loc(Ω), namely

Tϕf = ϕTf ∀f ∈ L1
loc(Ω), ∀ϕ ∈ C∞(Ω).

By (1.10) and as derivatives are associative and commute in D(Ω), the same applies to D′(Ω),

that is,

(D̃α ◦ D̃β)T = D̃α(D̃βT )

D̃α ◦ D̃βT = D̃α+βT = D̃β ◦ D̃αT
∀T ∈ D′(Ω),∀α, β ∈ NN . (1.11)

The formula of differentiation of the product is extended as follows:

D̃i(fT ) = (Dif)T + fD̃iT

∀f ∈ C∞(Ω),∀T ∈ D′(Ω), for i = 1, .., N ;
(1.12)

in fact, for any v ∈ D(Ω),

〈D̃i(fT ), v〉 = −〈fT,Div〉 = −〈T, fDiv〉 = 〈T, (Dif)v〉 − 〈T,Di(fv)〉

= 〈(Dif)T, v〉+ 〈D̃iT, fv〉 = 〈(Dif)T + fD̃iT, v〉.

A recursive procedure then yields the extension of the classical Leibniz rule:

D̃α(fT ) =
∑
β≤α

(
α

β

)
(Dα−βf)D̃βT

∀f ∈ C∞(Ω),∀T ∈ D′(Ω), ∀α ∈ NN . [Ex]

(1.13)

The translation (for Ω = RN ), the conjugation and other linear operations on functions are also

easily extended to distributions via transposition. [Ex]

NOTE: Any derivative of distributions is the limit of the corresponding incremental ratios.

Comparison with classical derivatives. We just state two results that characterize the coinci-

dence between distributional and ordinary derivatives.

Theorem 1.3 Du-Bois Reymond] For any f ∈ C0(Ω) and any i ∈ {1, . . . , N}, the two following

conditions are equivalent:

(i) D̃if ∈ C0(Ω), 4

(ii) f is classically differentiable w.r.t. xi at each point of Ω, and Dif ∈ C0(Ω).

In either case D̃if = Dif in Ω. []

4 that is, D̃if is a regular distribution that can be identified with a function h ∈ C0(Ω) ∩ L1
loc(Ω). Using the

notation (1.5), this condition and the final assertion read D̃iTf = Th and D̃iTf = TDif in Ω, respectively.
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The next theorem applies to Ω := ]a, b[. First we remind the reader that

a function f ∈ L1
loc(a, b) is absolutely continuous in ]a, b[ iff

∃g ∈ L1
loc(a, b) : f(x) = f(y) +

∫ x

y
g(ξ) dξ ∀x, y ∈ ]a, b[.

This entails that f is continuous and f ′ = g a.e. in ]a, b[. (Here by f ′ we denote the ordinary

derivative: f ′(x) = limh→0[f(x + h) − f(x)]/h, whenever this limit exists and is finite.) Thus if

f ∈ L1
loc(a, b) is absolutely continuous, then it is everywhere continuous, a.e. differentiable (in the

classical sense), and f ′ ∈ L1
loc(a, b).

The converse does not hold: f ∈ L1
loc(a, b) need not be absolutely continuous, even if f is

everywhere continuous and a.e. differentiable, and f ′ ∈ L1
loc(a, b); moreover in this case D̃if need

not be a regular distribution. The classical Cantor function is a counterexample. [Ex] If we drop

the condition of continuity, a simpler counterexample is provided by the Heaviside function H:

H(x) := 0 ∀x < 0 H(x) := 1 ∀x ≥ 0. (1.14)

Indeed DH = 0 a.e. in R, but of course H is not absolutely continuous. Note that D̃H = δ0 since

〈D̃H, v〉 = −
∫
R
H(x)Dv(x) dx = −

∫
R+

Dv(x) dx = v(0) = 〈δ0, v〉 ∀v ∈ D(R).

Theorem 1.4 For any f ∈ L1(a, b), the two following conditions are equivalent:

(i) D̃f ∈ L1(a, b),

(ii) f is a.e. equal to an absolutely continuous function.

In either case D̃f = Df in Ω. []

Thus, for complex functions of a single variable:

(i) f is of class C1 iff f and D̃f are both continuous,

(ii) f is absolutely continuous iff f and D̃f are both locally integrable.

Henceforth all derivatives will be meant in the sense of distributions, if not otherwise stated. We

shall denote them by Dα, dropping the tilde.

Examples. (i) D log |x| = 1/x (in R) in standard calculus, but not in the theory of distributions,

as 1/x is not locally integrable in any neighbourhood of x = 0, and thus it is not a distribution.

We claim that

D log |x| = p.v.
1

x
in D′(R). (1.15)

Indeed, as the support of any v ∈ D(R) is contained in some symmetric interval [−a, a], we have

〈D log |x|, v〉 = −〈log |x|, v′〉 = −
∫
R

(log |x|) v′(x) dx

= − lim
ε→0+

∫
R\[−ε,ε]

(log |x|) v′(x) dx

= lim
ε→0+

{∫
[−a,a]\[−ε,ε]

1

x
v(x) dx+ (log |ε|) [v(ε)− v(−ε)]

}
(

as

∫
[−a,a]\[−ε,ε]

v(0)

x
dx = 0 and lim

ε→0+
(log |ε|) [v(ε)− v(−ε)] = 0

)
= lim

ε→0+

∫
[−a,a]\[−ε,ε]

v(x)− v(0)

x
dx

(1.8)
= 〈p.v.

1

x
, v〉.

(1.16)
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* (ii) D[p.v.(1/x)] 6= −1/x2 as the latter is no distribution. For any v ∈ D(R) and any a > 0

such that supp(v) ⊂ [−a, a], we have

〈D(p.v.
1

x
), v〉 = −〈p.v.

1

x
, v′〉 (1.8)

= −
∫ a

−a

v′(x)− v′(0)

x
dx

= −
∫ a

−a

[v(x)− v(0)− xv′(0)]′

x
dx =

∫ a

−a

v(x)− v(0)− xv′(0)

x2
dx.

(1.17)

(This equality is obtained by partial integration, as the boundary term vanishes.) The final inte-

grand equals v′′(ξx)/2, for some ξx between 0 and x. Hence this distribution has order two. Notice

that this integral cannot be decomposed into a sum of integrals, not even using principal values.

** (iii) The even function

f(x) =
sin(1/|x|)
|x|

for a.e. x ∈ R (1.18)

is not locally (Lebesgue)-integrable in R; hence it cannot be identified with any distribution. On

the other hand, it is easily seen that the next two limits exist

g(x) := lim
ε→0+

∫ x

ε
f(t) dt ∀x > 0, g(x) := lim

ε→0−

∫ x

ε
f(t) dt ∀x < 0. (1.19)

Let us also set g(0) = 0. Thus g(x) =
∫ x

0 f(t) dt, if this is understood as a generalized Riemann

integral. Moreover, g ∈ L1
loc(R) ⊂ D′(R), so that Dg ∈ D′(R); however, Dg cannot be identified

with f ( 6∈ D′(R)). Actually, the distribution Dg is a regularization of the function f ; namely, it is

a distribution T whose restriction to R \ {0} coincides with f .

As g is odd and has a finite limit (denoted g(+∞)) at +∞, for any v ∈ D(R) and any a > 0 such

that supp(v) ⊂ [−a, a], still understanding integrals as generalized Riemann integrals,

〈Dg, v〉 = −〈g, v′〉 = − lim
b→+∞

∫ b

−b
g(x)[v(x)− v(0)]′ dx

= lim
b→+∞

∫ b

−b
f(x)[v(x)− v(0)] dx+ lim

b→+∞
[g(b)− g(−b)]v(0)

=

∫ a

−a
xf(x)v′(ξx) dx+ 2g(+∞)v(0) ∀v ∈ D(R),

(1.20)

for a suitable mapping x 7→ ξx. If is v′(0) 6= 0 then the latter integral is a Lebesgue integral. This

completes our representation of Dg.

* (iv) The modifications of (iii) for the odd function f̃(x) = [sin(1/|x|)]/x are left to the reader.

2

* Problems of division. For any f ∈ C∞(RN ) and S ∈ D′(RN ), let us consider the problem

find T ∈ D′(RN ) such that fT = S. (1.21)

(This is named a problem of division, since formally T = S/f .) The general solution can be

represented as the sum of a particular solution of the nonhomogeneous equation and the general

solution of the homogeneous equation fT0 = 0. The latter may depend on a number of arbitrary

constants.

If f does not vanish in RN , then 1/f ∈ C∞(RN ) and (??) has one and only one solution:

T = (1/f)S. On the other hand, if f vanishes at some points of RN , the solution is less obvious.

Let us see the case of N = 1, along the lines of [Gilardi: Analisi 3].
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Proposition 1.5 For any T ∈ D′ and m ∈ N,

xmT = 0 ⇒ ∃c0, ..., cm−1 ∈ C : T =
m−1∑
n=0

cnD
nδ0. (1.22)

On the other hand, even the simple-looking equation xmT = 1 is more demanding: notice that

x−m 6∈ D′(R) for any integer m ≥ 1.

Support and order of distributions. For any open set Ω̃ ⊂ Ω and any T ∈ D′(Ω), we define

the restriction of T to Ω̃, denoted T
∣∣
Ω̃

, by

〈T
∣∣
Ω̃
, v〉 := 〈T, v〉 ∀v ∈ D(Ω) such that supp(v) ⊂ Ω̃. (1.23)

Because of Theorem 1.1, T
∣∣
Ω̃
∈ D′(Ω̃).

A distribution T ∈ D′(Ω) is said to vanish in an open subset Ω̃ of Ω iff it vanishes on any function

of D(Ω) supported in Ω̃. Notice that, for any triplet of Euclidean domains Ω1,Ω2,Ω3,

Ω1 ⊂ Ω2 ⊂ Ω3 ⇒
(
T
∣∣
Ω2

)∣∣
Ω1

= T
∣∣
Ω1

∀T ∈ D′(Ω3). (1.24)

There exists then a (possibly empty) largest open set A ⊂ Ω in which T vanishes. [Ex] Its comple-

ment in Ω is called the support of T , and will be denoted by supp(T ).

For any K ⊂⊂ Ω, we defined mT,K as the smallest integer m that fulfills the estimate (1.3), and

called it the order of T in K. Here we set mT := sup{mT,K : K ⊂⊂ Ω}, and call it the order of

T ; each distribution has thus either finite or infinite order. For instance,

(i) regular distributions and distributions associated to Radon measures (e.g., the Dirac mass)

are of order zero; [Ex]

(ii) Dαδ0 is of order |α| for any α ∈ NN ;

(iii) p.v. (1/x) is of order one in D′(R). [Ex]

On the other hand,
∑∞

n=1D
nδn is of infinite order in D′(R).

For any open set Ω̂ ⊂ Ω and any T ∈ D(Ω), the restriction T |
Ω̂

is defined by transposing the

trivial extension D(Ω̂)→ D(Ω) (that is, the extension with null value):

D(Ω̂)
〈T |

Ω̂
, ϕ〉D(Ω̂)

= D(Ω)〈T, ϕ̃〉D(Ω̂)
∀ϕ ∈ D(Ω).

It is easy to check that T |
Ω̂
∈ D′(Ω̂).

The next statement easily follows from (1.3).

Remarks 1.6 (i) In general distributions cannot be extended to a larger open set: this may fail

even for regular distributions.

(ii) For any p, Lp(Ω) can be trivially identified with Lp(Ω̃) whenever Ω and Ω̃ are open sets,

Ω̃ ⊂ Ω and |Ω \ Ω̃| = 0. The analogous identification fails for Lploc (if p 6= ∞), and a fortiori for

distributions: T ∈ D′(Ω) entails T |
Ω̃
∈ D′(Ω̃), but the converse fails, even for regular distributions.

Counterexamples are provided by δ0 and f(x) = x−2 in Ω = R and in Ω̃ = R \ {0}. 2

Theorem 1.7 Any compactly supported distribution is of finite order.

The next theorem is also relevant, and will be applied ahead.
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Theorem 1.8 Any distribution whose support is the origin is a finite combination of derivatives

of the Dirac mass. []

Exercise. May any distribution of infinite order be approximated by a sequence of distributions

of finite order?

The space E(Ω) and its dual. In his theory of distributions, Laurent Schwartz denoted by E(Ω)

the space C∞(Ω), equipped with the family of seminorms

|v|K,α := sup
x∈K
|Dαv(x)| ∀K ⊂⊂ Ω,∀α ∈ NN .

This renders E(Ω) a locally convex Frèchet space, and induces the topology of uniform convergence

of all derivatives on any compact subset of Ω: for any sequence {un} in E(Ω) and any u ∈ E ,

un → u in E(Ω) ⇔
sup
x∈K
|Dα(un − u)(x)| → 0 ∀K ⊂⊂ Ω, ∀α ∈ NN . (1.25)

Notice that

D(Ω) ⊂ E(Ω) with continuous and sequentially dense injection, (1.26)

namely, any element of E(Ω) can be approximated by a sequence of D(Ω). This can be checked via

multiplication by a suitable sequence of compactly supported smooth functions. [Ex] By (1.26)

E ′(Ω) ⊂ D′(Ω) with continuous and sequentially dense injection, (1.27)

so that we can identify E ′(Ω) with a closed subspace of D′(Ω).

As we did for D′(Ω), we shall equip the space E ′(Ω) with the sequential weak star convergence:

for any sequence {Tn} and any T ∈ E ′(Ω),

Tn → T in E ′(Ω) ⇔ Tn(v)→ T (v) ∀v ∈ E(Ω). (1.28)

[This makes E ′(Ω) a nonmetrizable locally convex Hausdorff space.]

The sequential weak star convergence of E ′(Ω) is strictly stronger than that induced by D′(Ω):

for any sequence {Tn} and T in E ′(Ω) and any T ∈ E ′(Ω),

Tn → T in E ′(Ω)
6⇐⇒ Tn → T in D′(Ω).[Ex] (1.29)

If Ω = R, the sequence {χ[n,n+1]} (the characteristic functions of the intervals [n, n + 1]) is a

counterexample to the converse implication:

χ[n,n+1] → 0 in D′(RN ) but not in E ′(RN ).

Theorem 1.9 E ′(Ω) can be identified with the closed subspace of distributions having compact

support.

9



We just outline a part of the argument. Let T ∈ D′(Ω) have support K ⊂⊂ Ω. For any v ∈ E(Ω),

multiplying it by χK and then convoluting with a regularizing kernel ρ (see (1.2)), one can construct

v0 ∈ D(Ω) such that v0 = v in K. [Ex] One may thus define T̃ (v) by setting T̃ (v) = T (v0). It is

easily checked that this determines a unique T̃ ∈ E ′(Ω). Compactly supported distributions can

thus be identified with certain elements of E ′(Ω).

The proof of the surjectivity of the mapping T 7→ T̃ is less straightforward, and is here omitted.

On the basis of the latter theorem, examples of elements of E ′(Ω) are easily provided. E.g.:

(i) any compactly supported f ∈ L1
loc belongs to E ′(Ω),

(ii)
∑m

n=1D
αnδan ∈ E ′(Ω), for any finite families a1, ..., am ∈ Ω and α1, ..., αm ∈ NN ,

(iii) T =
∑∞

n=1 n
−2Dαnδan ∈ E ′(Ω), for any sequence {an} contained in a compact subset of Ω,

and any bounded sequence of multi-indices {αn}. (If {an} is not contained in a compact subset of

Ω, then T ∈ D′(Ω).)

On the basis of the latter theorem, we can apply to E ′(Ω) the operations that we defined for

distributions. It is straightforward to check that this space is continuously transformed to itself by

differentiation and by multiplication by a smooth function.

The space S of rapidly decreasing smooth functions. As we shall see, in order to extend

the Fourier transform to distributions, Laurent Schwartz introduced the space of (infinitely differ-

entiable) rapidly decreasing functions (at ∞): 5

S
(
RN
)

:=
{
v ∈ C∞ : ∀α, β ∈ NN , xβDαv ∈ L∞

}
=
{
v ∈ C∞ : ∀α ∈ NN , ∀m ∈ N,
|x|mDαv(x)→ 0 as |x| → +∞

}
.

(1.30)

(It is easy to check that these two sets coincide.) [Ex] We shall write S in place of S
(
RN
)
. This is a

locally convex Fréchet space equipped with either of the following equivalent families of seminorms

[]

|v|α,β := sup
x∈RN

|xβDαv(x)| α, β ∈ NN , (1.31)

|v|m,α := sup
x∈RN

(1 + |x|2)m|Dαv(x)| m ∈ N, α ∈ NN . (1.32)

For instance, for any θ ∈ C∞ such that θ(x)/|x|a → +∞ as |x| → +∞ for some a > 0, e−θ(x) ∈ S.

By the Leibniz rule, for any polynomials P and Q, the operators

u 7→ P (x)Q(D)u, u 7→ P (D)[Q(x)u] (1.33)

map S to S and are continuous. [Ex] It is easily checked that

D ⊂ S ⊂ E with continuous and sequentially dense injections. (1.34)

The space S ′ of tempered distributions. We shall denote the (topological) dual space of S by

S ′. As S is a metric space, this is the space of the linear functionals T : S → C such that

{vn} ⊂ S, vn → 0 in S ⇒ 〈T, vn〉 → 0. (1.35)

5 Laurent Schwartz founded the theory of distributions upon the dual of three main function spaces: D(Ω), E(Ω)
and S(RN ). The two latter are Fréchet space, at variance with the first one and with the respective (topological)
duals. S(RN ) is also called the Schwartz space.

10



The elements of this space are named tempered distributions: we shall see that actually S ′ ⊂ D′
(up to identifications) with continuous injection. Here are some examples:

(i) any compactly supported T ∈ D′(Ω),

(ii) any f ∈ Lp with p ∈ [1,+∞] (since, by the Hölder inequality, (1 + |x|)−af ∈ L1 for any

a > 1/p′, p′ being the conjugate index of p),

(iii) any function f such that |f(x)| ≤ C(1 + |x|)m for some C > 0 and m ∈ N,

(iv) f(x) = p(x)w(x), for any polynomial p and any w ∈ L1. These are called slowly increasing

functions, and include polynomials and Lp for any p ∈ [1,+∞].

On the other hand L1
loc is not included in S ′. E.g., e|x| 6∈ S ′.

One can show that S is the smallest subspace of that is stable under differentiation and multi-

plication by a polynomial.

Convergence in S ′. As we did for D′(Ω) and E ′(Ω), we shall equip the space S ′ with the sequential

weak star convergence: for any sequence {Tn} in S ′ and any T ∈ S ′,

Tn → T in S ′ ⇔ Tn(v)→ T (v) ∀v ∈ S. (1.36)

[This makes S ′ a nonmetrizable locally convex Hausdorff space.]

As D ⊂ S ′ ⊂ D′ and D is a sequentially dense subset of D′, it follows that

S ′ ⊂ D′ with continuous and sequentially dense injection; [Ex] (1.37)

namely, any element of D′ can be approximated by a sequence of S ′. The sequential weak star

convergence of S ′ is strictly stronger than that induced by D′: for any sequence {Tn} in S ′ and any

T ∈ S ′,
Tn → T in S ′ 6⇐⇒ Tn → T in D′.[Ex] (1.38)

In R, {e|x|χ[n,n+1]} is a counterexample to the converse implication:

e|x|χ[n,n+1] → 0 in D′ but not in S ′. (1.39)

On the other hand L1
loc is not included in S ′, not even for N = 1. E.g., e|x| 6∈ S ′.

As S ⊂ E with sequentially dense inclusion, it follows that

E ′ ⊂ S ′ with continuous and sequentially dense injection; [Ex] (1.40)

Because of (1.40), we can apply to S ′ the operations that we defined for distributions. It is

straightforward to check that this space is continuously transformed to itself by differentiation and

by multiplication by a smooth function.

For any α ∈ NN , the linear and continuous operators u 7→ xαu and u 7→ Dαu are extended from

S to S ′ by transposition:

〈xαT, v〉 := 〈T, xαv〉, 〈DαT, v〉 := (−1)|α|〈T,Dαv〉
∀v ∈ S, ∀T ∈ S ′, ∀α ∈ NN .

(1.41)

These operators are linear and continuous in S ′. The same then holds for the operators T 7→ P (x)T

and T 7→ P (D)T , for any polynomial P of N variables.

11



For instance, for N = 1, the function x 7→ sin(ex) is slowly increasing, hence tempered. Therefore

its derivative x 7→ ex cos(ex) is also tempered, at variance with its absolute value.

L. Schwartz also introduced spaces of slowly increasing functions and rapidly decreasing distri-

butions. But we shall not delve on that.

1.1 Overview and Commentaries

Overview of distribution spaces. We introduced the spaces D(Ω), E(Ω), with (up to identifi-

cations)

D(Ω) ⊂ E(Ω) with continuous and dense injection. (1.42)

For Ω = RN (which is not displayed), we also defined S, for which

D ⊂ S ⊂ E with continuous and dense injection. (1.43)

We equipped the respective dual spaces with the sequential weak star convergence. (1.42) and

(1.43) respectively yield

E ′(Ω) ⊂ D′(Ω) with continuous and sequentially dense injection, (1.44)

and, for Ω = RN ,

E ′ ⊂ S ′ ⊂ D′ with continuous and sequentially dense injection. (1.45)

Moreover,

D ⊂ D′, S ⊂ S ′, with continuous and sequentially dense injections. (1.46)

On the other hand, E is not included in E ′.
These density properties can be proved via regularization, by a procedure that we shall introduce

in the next section.

2 Convolution

Convolution of L1-functions. For any measurable functions f, g : RN → C, we call convolution

product (or just convolution) of f and g the function

(f ∗ g)(x) :=

∫
f(x− y)g(y) dy for a.e. x ∈ RN , (2.1)

whenever this integral (absolutely) converges for a.e. x. (We write
∫
...dy in place of

∫
...
∫
RN ... dy1...dyN ,

and henceforth omit to display the domain RN .) Note that

supp(f ∗ g) ⊂ supp(f) + supp(g). [Ex] (2.2)

Henceforth, whenever A and B are two topological vector spaces of functions for which the

convolution makes sense, we set A ∗B := {f ∗ g : f ∈ A, g ∈ B}, and define A ·B similarly.
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Theorem 2.1 (i) L1 ∗ L1 ⊂ L1, and

‖f ∗ g‖L1 ≤ ‖f‖L1‖g‖L1 ∀f, g ∈ L1. (2.3)

(ii) L1
loc ∗ L1

comp ⊂ L1
loc, and 6

‖f ∗ g‖L1(K) ≤ ‖f‖L1(K−supp(g))‖g‖L1

∀K ⊂⊂ RN , ∀f ∈ L1
loc,∀g ∈ L1

comp.
(2.4)

Moreover L1
comp ∗ L1

comp ⊂ L1
comp.

(iii) For N = 1, L1
loc(R+) ∗ L1

loc(R+) ⊂ L1
loc(R+). 7 For any f, g ∈ L1

loc(R+),

(f ∗ g)(x) =

{∫ x
0 f(x− y)g(y) dy for a.e. x ≥ 0

0 for a.e. x < 0,
(2.5)

‖f ∗ g‖L1(0,M) ≤ ‖f‖L1(0,M)‖g‖L1(0,M) ∀M > 0. (2.6)

(iv) In each of these cases the convolution is commutative and associative, and the mapping

(u, v) 7→ u ∗ v is continuous (sequentially continuous if it involves the nonmetrizable space L1
comp).

Proof. (i) For any f, g ∈ L1, the function (RN )2 → C : (z, y) 7→ f(z)g(y) is (absolutely) integrable,

and by changing integration variable we get∫∫
f(z)g(y) dz dy =

∫∫
f(x− y)g(y) dy dx.

By Fubini’s theorem the function f ∗ g : x 7→
∫
f(x− y)g(y) dy is then integrable. Moreover

‖f ∗ g‖L1 =

∫
dx
∣∣∣∫ f(x− y)g(y) dy

∣∣∣
≤
∫∫
|f(x− y)||g(y)| dy dx =

∫∫
|f(z)||g(y)| dy dx = ‖f‖L1‖g‖L1 .

(ii) For any f ∈ L1
loc and g ∈ L1

comp, setting Sg := supp(g),

(f ∗ g)(x) =

∫
Sg

f(x− y)g(y) dy for a.e. x ∈ RN .

Moreover, for any K ⊂⊂ RN ,

‖f ∗ g‖L1(K) ≤
∫
K
dx

∫
Sg

|f(x− y)g(y)| dy =

∫
Sg

dy

∫
K
|f(x− y)g(y)| dx

=

∫
Sg

dy

∫
K−Sg

|f(z)g(y)| dz ≤ ‖f‖L1(K−Sg)‖g‖L1 .

The proof of the inclusion L1
comp ∗ L1

comp ⊂ L1
comp is based on (2.2), and is left to the Reader.

(iii) Part (iii) can be proved by means of an argument similar to that of part (ii), which we also

leave to the reader. 2

6By L1
comp we denote the space of the functions v ∈ L1 that have compact support. The support of a measurable

function v : Ω→ R is the complement in Ω of the set of the points that have a neighborhood in which v vanishes a.e..
7 Any function or distribution defined on R+ will be automatically extended to the whole R with value 0. In

Signal Analysis (also called Signal Processing in enginering), the functions of time that vanish for any t < 0 are said
causal. One can also define the space D′(R+) of causal distributions, namely distributions with support in [0,+∞[.
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Proposition 2.2 L1, L1
comp and L1

loc(R+), equipped with the convolution product, are commutative

algebras (without unit). 8 In particular,

f ∗ g = g ∗ f, (f ∗ g) ∗ h = f ∗ (g ∗ h) a.e. in RN

∀(f, g, h) ∈ (L1)3 ∪
(
L1

loc × L1
comp × L1

comp

)
.

(2.7)

(We may then write f ∗ g ∗ h without risk of ambiguity.)

If N = 1, the same holds for any (f, g, h) ∈ L1
loc(R+)3, too.

The mapping (f, g, h) 7→ f ∗ g ∗ h is (sequentially) continuous for any choice of the above spaces.

Proof. For any (f, g, h) ∈ (L1)3 and a.e. x ∈ RN ,

(f ∗ g)(x) =

∫
f(x− y)g(y) dy =

∫
f(z)g(x− z)dz = (g ∗ f)(x),

[(f ∗ g) ∗ h](x) =

∫
[(f ∗ g)](z)h(x− z) dz =

∫
dz

∫
f(y)g(z − y) dy h(x− z)

=

∫∫
f(y)g(t)h((x− y)− t) dt dy =

∫
dy f(y)

∫
g(t)h(x− y − t) dt

=

∫
f(y)[(g ∗ h)](x− y) dy = [f ∗ (g ∗ h)](x).

The cases of (f, g, h) ∈
(
L1

loc×L1
comp×L1

comp

)
and (f, g, h) ∈ L1

loc(R+)3 are analogously checked.

The rest of the proof is left to the reader. 2

By means of these results is easily seen that (L1, ∗) (here “·” stands for the pointwise product) is

a commutative Banach algebra. The same clearly holds for (L∞, ·), which also has the unit element

e ≡ 1.

Convolution of Lp-functions. The following result generalizes Theorem 2.1. 9

8 * Let a linear space X over a field K (= C or R) be equipped with a product ∗ : X ×X → X. This is called an
algebra iff, for any u, v, z ∈ X and any λ ∈ K:

(i) u ∗ (v ∗ z) = (u ∗ v) ∗ z,
(ii) (u+ v) ∗ z = u ∗ z + v ∗ z, z ∗ (u+ v) = z ∗ u+ z ∗ v,
(iii) λ(u ∗ v) = (λu) ∗ v = u ∗ (λv).
The algebra is said commutative iff the product ∗ is commutative.
X is called a Banach algebra iff it is both an algebra and a Banach space (over the same field), and, denoting

the norm by ‖ · ‖,
(iv) ‖u ∗ v‖ ≤ ‖u‖‖v‖ for any u, v ∈ X.
X is called a Banach algebra with unit iff
(v) there exists (a necessarily unique) e ∈ X such that ‖e‖ = 1, and e ∗ u = u ∗ e = u for any u ∈ X.
For any N ∈ N, the space of square matrices CN×N equipped with the usual multiplication is a noncommutative

Banach algebra with unit. The same applies for the space of bounded complex-valued functions defined on any
nonempty set, equipped with pointwise multiplication.

9 This theorem may be compared with the following generalization of the Hölder inequality, which easily follows
from that inequality. If p, q, r ∈ [1,+∞] are such that p−1 + q−1 = r−1, then

uv ∈ Lr(Ω), ‖uv‖r ≤ ‖u‖p‖v‖q ∀u ∈ Lp(Ω), ∀v ∈ Lq(Ω). (2.8)
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• Theorem 2.3 (Young) Let

p, q, r ∈ [1,+∞], p−1 + q−1 = 1 + r−1. 10 (2.9)

Then: (i) Lp ∗ Lq ⊂ Lr and

‖f ∗ g‖Lr ≤ ‖f‖Lp‖g‖Lq ∀f ∈ Lp,∀g ∈ Lq. (2.10)

(ii) Lploc ∗ L
q
comp ⊂ Lrloc and

‖f ∗ g‖Lr(K) ≤ ‖f‖Lp(K−supp(g))‖g‖Lq

∀K ⊂⊂ RN ,∀f ∈ Lploc,∀g ∈ L
q
comp.

(2.11)

Moreover, Lpcomp ∗ Lqcomp ⊂ Lrcomp.

(iii) For N = 1, Lploc(R
+) ∗ Lqloc(R

+) ⊂ Lrloc(R+), and

‖f ∗ g‖Lr(0,M) ≤ ‖f‖Lp(0,M)‖g‖Lq(0,M)

∀M > 0, ∀f ∈ Lploc(R
+), ∀g ∈ Lqloc(R

+).
(2.12)

The mapping (f, g) 7→ f ∗ g is thus continuous in each of these three cases.

* Proof. (i) If p = +∞, then by (2.8) q = 1 and r = +∞, and (2.10) obviously holds; let us then

assume that p < +∞. For any fixed f ∈ Lp, the generalized (integral) Minkowski inequality and

the Hölder inequality respectively yield

‖f ∗ g‖Lp =
∥∥∥∫ f(x− y)g(y) dy

∥∥∥
Lp
≤ ‖f‖Lp‖g‖L1 ∀g ∈ L1,

‖f ∗ g‖L∞ = ess sup
x∈RN

∣∣∣∣ ∫ f(x− y)g(y) dy

∣∣∣∣ ≤ ‖f‖Lp‖g‖Lp′ ∀g ∈ Lp′

(p−1 + (p′)−1 = 1). Thus the mapping g 7→ f ∗ g is (linear and) continuous from L1 to Lp and from

Lp
′

to L∞. By the Riesz-Thorin Theorem (see below), this mapping is then continuous from Lq to

Lr and inequality (2.10) holds, provided that

∃θ ∈ ]0, 1][:
1

q
=
θ

1
+

1− θ
p′

,
1

r
=
θ

p
+

1− θ
∞

.

As the latter equality yields θ = p/r, by the first one we get p−1 + q−1 = 1 + r−1.

(ii) For any f ∈ Lploc and g ∈ Lqcomp, setting Sg := supp(g),

(f ∗ g)(x) =

∫
Sg

f(x− y)g(y) dy converges for a.e. x ∈ RN .

If r = +∞ then p = q = 1, and we are in the situation of part (ii) of Theorem 2.1; let us then

assume that r 6= +∞. For any K ⊂⊂ RN , denoting by χK,g the characteristic function of K − Sg,
we have

‖f ∗ g‖rLr(K) =

∫
K

∣∣∣∣ ∫
Sg

f(x− y)g(y) dy

∣∣∣∣r dx
≤
∫ ∣∣∣∣ ∫ (χK,gf)(x− y)g(y) dy

∣∣∣∣r dx.
10 Here we set (+∞)−1 := 0.
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As χK,gf ∈ Lp, by part (i) the latter integral is finite.

(iii) Part (iii) can be proved by means of an argument similar to that of part (ii), that we leave

to the reader. 2

* Lemma 2.4 (Riesz-Thorin’s) Let Ω,Ω′ be nonempty open subsets of RN . For i = 1, 2, let

pi, qi ∈ [1,+∞] and assume that 11

A : Lp1(Ω) + Lp2(Ω)→ Lq1(Ω′) + Lq2(Ω′) (2.13)

is a linear operator such that

A : Lpi(Ω)→ Lqi(Ω′) is continuous. (2.14)

Let θ ∈ ]0, 1[, and p := p(θ), q := q(θ) be such that

1

p
=

θ

p1
+

1− θ
p2

,
1

q
=

θ

q1
+

1− θ
q2

. (2.15)

Then A maps Lp(Ω) to Lq(Ω′), is linear and continuous. Moreover, if M1 and M2 are two

constants such that

‖Af‖Lqi (Ω′) ≤Mi‖f‖Lpi (Ω) ∀f ∈ Lpi(Ω) (i = 1, 2), (2.16)

then

‖Af‖Lq(Ω′) ≤M θ
1M

1−θ
2 ‖f‖Lp(Ω) ∀f ∈ Lp(Ω). [] (2.17)

By this result, we may regard Lp(θ)(Ω) as an interpolate space between Lp1(Ω) and Lp2(Ω). (2.17)

is accordingly called the interpolation inequality. 12

Let us set

f̌(x) = f(−x) ∀x ∈ RN ,∀f ∈ L1
loc. (2.18)

* Corollary 2.5 Let

p, q, s ∈ [1,+∞], p−1 + q−1 + s−1 = 2. (2.19)

Then

∀(f, g, h) ∈ Lp × Lq × Ls,
(f ∗ g) · h, g · (f̌ ∗ h), f · (ǧ ∗ h) ∈ L1, and∫

(f ∗ g) · h =

∫
g · (f̌ ∗ h) =

∫
f · (ǧ ∗ h).

(2.20)

The same holds also

∀(f, g, h) ∈
(
Lpcomp × L

q
loc × L

s
comp

)
,

∀(f, g, h) ∈ Lploc(R
+)× Lqloc(R

+)× Lscomp(R+).
(2.21)

11 Lp1(Ω)+Lp2(Ω) and Lq1(Ω̃)+Lq2(Ω̃) are topological linear spaces, that is, linear spaces equipped with a topology
for which the linear operations are continuous.

12 This theorem is actually a prototype of the theory of Banach spaces interpolation.
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(In the language of operator theory, f̌∗ is the adjoint of the operator f∗.)

Proof. As r−1 + s−1 = 1 by (2.10) and (2.19), the Hölder inequality yields the inclusions of (2.20).

[Ex] The first equality in (2.20) follows from the computation∫
(f ∗ g)h dx =

∫ (∫
f(x− y)g(y) dy

)
h(x) dx

=

∫
g(y)

(∫
f̌(y − x)h(x) dx

)
dy =

∫
g(f̌ ∗ h) dy;

As f ∗g = g∗f , the second equality in (2.20) also holds. The assertions (2.21) are similarly checked;

this is left to the reader. 2

Remark 2.6 * Let f : RN ×RN → C and g : RN → C be two measurable functions such that the

integral

I(x) =

∫
f(x, y)g(y) dy (2.22)

(absolutely) converges for a.e. x. This is sometimes referred to as a Volterra convolution, and

extends the ordinary convolution (2.1), which is retrieved if the function u is of the form f(x, y) =

f̃(x− y).

Some of the foregoing results can be extended to this more general set-up. Let us denote by

L∞y (L1
x) the space of functions f such that f(·, y) ∈ L1 for a.e. y, and the function y 7→ ‖f(·, y)‖L1

belongs to L∞. For instance, part (i) of Theorem 2.1 is easily extended as follows:∫
f(x, y)g(y) dy ∈ L1

x ∀f ∈ L∞y (L1
x),∀g ∈ L1,∥∥∥∫ f(x, y)g(y) dy

∥∥∥
L1
x

≤ ‖f‖L∞y (L1
x) ‖g‖L1 .

(2.23)

Several variants of this statement can be derived along the lines above, including an extension of

Young’s Theorem 2.3; but we shall not delve on this. 2

Convolution and translation. Let us next set τhf(x) := f(x+ h) for any f : RN → C and any

x, h ∈ RN .

Let us denote by C0(RN ) the space of continuous functions RN → C; this is a Fréchet space

equipped with the family of sup-norms on the compact subsets of RN . Let us also denote by

C0
0 (RN ) the closed subspace of C0(RN ) of functions that vanish at infinity; this is a Banach space

equipped with the sup-norm. The space C0
0 (RN ) is also a closed subspace of C0

buc(RN ), which is

the Banach space of bounded uniformly continuous functions and is equipped with the sup-norm.

Lemma 2.7 As h→ 0,

τhf → f in C0, ∀f ∈ C0, (2.24)

τhf → f in Lp, ∀f ∈ Lp, ∀p ∈ [1,+∞[. (2.25)

Proof. As any f ∈ C0 is locally uniformly continuous, τhf → f uniformly in any K ⊂⊂ RN ; (2.24)

thus holds. This yields (2.25), as C0 is dense in Lp for any p ∈ [1,+∞[. 2

By the next result, in the Young theorem the space L∞ can be replaced by L∞ ∩C0, and in part

(i) also by L∞ ∩ C0
0 .
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* Proposition 2.8 Let p, q ∈ [1,+∞] be such that p−1 + q−1 = 1. Then:

f ∗ g ∈ C0 ∀(f, g) ∈ (Lp × Lq) ∪ (Lploc × L
q
comp), (2.26)

f ∗ g ∈ C0 ∀(f, g) ∈ Lploc(R
+)× Lqloc(R

+) if N = 1, (2.27)

(f ∗ g)(x)→ 0 as |x| → +∞ ∀(f, g) ∈ Lp × Lq,∀p, q ∈ [1,+∞[. (2.28)

Proof. For instance, let p 6= +∞ and (f, g) ∈ Lp×Lq; the other cases may be dealt with analogously.

By Lemma 2.7,

‖τh(f ∗ g)− (f ∗ g)‖L∞ =
∥∥∥∫ [f(x+ h− y)− f(x− y)]g(y)] dy

∥∥∥
L∞

≤ ‖τhf − f‖Lp‖g‖Lq → 0 as h→ 0;

(2.29)

the function f ∗ g can then be identified with a uniformly continuous function. (2.26) is thus

established. (2.27) can be similarly checked.

Let {fn} ⊂ Lpcomp and {gn} ⊂ Lqcomp be such that fn → f in Lp and gn → g in Lq. Hence fn ∗ gn
has compact support, and fn ∗gn → f ∗g uniformly. This yields the final statement of the theorem.

2

(2.28) fails if either p or q = +∞. E.g., for any u ∈ L1, u ∗ 1 =
∫
u(y) dy is constant.

Regularization by convolution. A function ρ : RN → R is called a mollifier (or a regularizing

kernel) iff

ρ ∈ C∞(RN ), ρ ≥ 0, ρ(x) = 0 if |x| ≥ 1,

∫
RN

ρ(x) dx = 1. (2.30)

A standard construction provides an example. Let us set

v(x) := exp
[(
|x|2 − 1

)−1]
if |x| < 1, v(x) := 0 if |x| ≥ 1,

ρ(x) :=
v(x)∫

RN v(y) dy
, ρε(x) := ε−Nρ

(x
ε

)
∀x ∈ RN , ∀ε > 0.

(2.31)

It is easily checked that ρε is a mollifier for any ε > 0.

For any u ∈ L1(Ω), let us denote by ũ ∈ L1(RN ) the extension of u with zero value on RN \ Ω.

For any ε > 0, we then define the regularization Rεu by

Rεu(x) := (ρε ∗ ũ)(x) =

∫
Ω
ρε(x− y)u(y) dy ∀x ∈ RN . (2.32)

Notice that, since ρε ∗ ũ = ũ ∗ ρε,

Rεu(x) = ε−N
∫
RN

ρ
(y
ε

)
ũ(x− y) dy =

∫
RN

ρ(t)ũ(x− εt) dt. (2.33)

The following theorem summarizes some properties of the operator Rε.

Proposition 2.9 Let u ∈ L1
loc and define Rε as above. Then:

18



(i) For any ε > 0, Rεu ∈ C∞(RN ) and

DαRεu(x) = ε−N−|α|
∫

Ω

[
(Dαρ)

(x− y
ε

)]
u(y) dy = ε−|α|

∫
RN

[
Dαρ(y)

]
ũ(x− εy) dy (2.34)

for any x ∈ RN and any α ∈ NN .

(ii) For any ε > 0, the support of Rεu is contained within the ε-neighbourhood of the support of

u. (Mollification thus preserves the compactness of the support.)

(iii) For any v ∈ C0
c (RN ), Rεv → v uniformly as ε→ 0.

Let us next assume that Ω is an open subset of RN , and u ∈ Lp(Ω).

(iv) For any p ∈ [1,+∞] and u ∈ Lp(Ω), Rεu ∈ Lp(Ω) and ‖Rεu‖Lp(Ω) ≤ ‖u‖Lp(Ω).

(v) For any p ∈ [1,+∞[ and u ∈ Lp(Ω), ‖Rεu− u‖Lp(Ω) → 0 as ε→ 0.

Proof. (i) All the derivatives of ρ are bounded, and

Dα
x [ρε(x− y)] = ε−NDα

x

[
ρ
(x− y

ε

)]
= ε−N−|α|(Dαρ)

(x− y
ε

)
,

for all x ∈ RN and all α ∈ NN . Next let us differentiate both sides of (2.33), and interchange

derivation and integration by Lebesgue’s theorem of dominated convergence. This yields (2.34).

(ii) The stated property on the support of Rεf stems from (2.2) and (2.33).

(iii) Let v ∈ C0
c (RN ). As ‖ρ‖L1(RN ) = 1 and ρ ≥ 0, for any x ∈ RN and any ε > 0

|Rεv(x)− v(x)| (2.33)
=

∫
B(0,1)

ρ(y)[v(x− εy)− v(x)] dy

≤
∫
B(0,1)

ρ(y)|v(x− εy)− v(x)| dy ≤ max
|z−x|≤ε

|v(z)− v(x)|.

Therefore Rεv → v uniformly as ε→ 0.

(iv) As ‖ρε‖L1(RN ) = 1, for any p ∈ [1,+∞[ the Young Theorem 2.3 yields

‖Rεu‖Lp(Ω) = ‖ρε ∗ ũ‖Lp(Ω) ≤ ‖ρε‖L1(RN ) ‖ũ‖Lp(RN ) = ‖u‖Lp(Ω).

If u ∈ L∞(Ω) the same holds for p =∞, 13

(v) Let p 6= ∞. As C0
c (Ω) is dense in Lp(Ω), for any u ∈ Lp(Ω) and any η > 0, there exists

vη ∈ C0
c (Ω) with ‖u− vη‖Lp(Ω) ≤ η. By using the linearity of Rε and part (iii), we get

‖Rεu− u‖Lp(Ω)

≤ ‖Rεu−Rεvη‖Lp(Ω) + ‖Rεvη − vη‖Lp(Ω) + ‖vη − u‖Lp(Ω)

≤ ‖Rεvη − vη‖Lp(Ω) + 2η.

(2.35)

For η fixed, by part (iii) ‖Rεvη−vη‖Lp(Ω) → 0 as ε→ 0. Therefore lim supε→0 ‖Rεu−u‖Lp(Ω) ≤ 2η.

Since η > 0 was arbitrary, the assertion follows. 2

13 Here we apply the following result. If u ∈
⋂
q<p<+∞L

p(Ω) and C = supq<p<+∞ ‖u‖p < +∞, then u ∈ L∞(Ω)
and ‖u‖∞ ≤ C.
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* Convolution of distributions. The convolution between a distribution and a smooth function

RN → C is defined by extending (2.1):

(T ∗ v)(x) := 〈T, v(x− ·)〉 ∀x ∈ RN , (2.36)

whenever T and v belong to two spaces in duality, like D′×D or E ′×E or S ′×S. By this formula

we mean that, defining the function vx : y 7→ v(x− y) for any fixed x ∈ RN , (T ∗ v)(x) := 〈T, vx〉.
Bilinearity, separate (sequential) continuity and the support property (2.2) can be routinely checked.

Next we deal with the convolution of two distributions, starting by regular distributions. By part

(ii) of Theorem 2.1,

f ∗ g ∈ L1
loc ∀(f, g) ∈ (L1

loc×L1
comp) ∪ (L1

comp×L1
loc).

For any ϕ ∈ D, then∫
(f ∗ g)(x)ϕ(x) dx =

∫∫
f(x− y)g(y)ϕ(x) dxdy =

∫∫
f(z)g(y)ϕ(z + y) dzdy. (2.37)

By Fubini’s theorem, each of these double integrals equals each of the corresponding iterated

integrals. As L1
loc and L1

comp are respectively dense inD′ and E ′, one can then extend the convolution

to these spaces by continuity. More explicitly, for any (T, S) ∈ (D′×E ′)∪(E ′×D′), we define T ∗S ∈ D′
by

〈T ∗ S, ϕ〉 := 〈Tx, 〈Sy, ϕ(x+ y)〉〉 ∀ϕ ∈ D. (2.38)

In 〈Sy, ϕ(x + y)〉 the variable x is just a parameter. (If this pairing is reduced to an integration,

then y is the integration variable.) This definition is meaningful, since

〈Sy, ϕ(x+ y)〉 ∈ D ∀ϕ ∈ D, ∀S ∈ E ′,
〈Sy, ϕ(x+ y)〉 ∈ E ∀ϕ ∈ D, ∀S ∈ D′.[Ex]

(2.39)

Let us recall the definition (2.18), and define Š for any distribution S by transposition:

〈Š, v〉 = 〈S, v̌〉 ∀v ∈ D, (2.40)

extending the analogous definition for functions. By (2.38), we can then extend the statement

(2.20):

〈T ∗ S, ϕ〉 = 〈T, Š ∗ ϕ〉 ∀ϕ ∈ D,∀(T, S) ∈ (D′×E ′) ∪ (E ′×D′). (2.41)

By approximating with regular distributions, it is not difficult to extend the properties that we

saw for the convolution of functions. More specifically, in (D′×E ′) ∪ (E ′×D′) the convolution is

symmetric, linear, separately (sequential) continuous and fulfills the support property (2.2).

On the other hand in general for (T, S) ∈ D′×S ′, and a fortiori for (T, S) ∈ D′×D′, one cannot

define T ∗ S; this may fail even for T, S ∈ L1
loc. Actually, one cannot write 〈TxSy, ϕ(x+ y)〉 in the

duality between D′(RN×RN ) and D(RN×RN ), since the support of the mapping (x, y) 7→ ϕ(x+ y)

is compact only if ϕ ≡ 0.

Anyway, analogously to what we saw for functions, in some cases the convolution of two distri-

butions can be defined also if both factors have noncompact support. In particular for N = 1 this

applies to causal distributions: for any T, S ∈ D′(R+) one can define T ∗ S ∈ D′(R+) as in (2.38).

As L1
loc(R+) is dense in D′(R+), this can be justified by regularizing the distribution, then using

part (iii) of Theorem 2.1, and finally passing to the limit.
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Theorem 2.10 (i)

E ′ ∗ E ′ ⊂ E ′, D′(R+)′ ∗ D′(R+)′ ⊂ D′(R+)′, S ′(R+)′ ∗ S ′(R+)′ ⊂ S ′(R+)′. (2.42)

(ii) (E ′, ∗), (D′(R+), ∗) and (S ′(R+), ∗) are associative and commutative algebras, with unit ele-

ment δ0.

(ii) Moreover,

D′ ∗ E ′ ⊂ D′, S ′ ∗ E ′ ⊂ S ′, S ∗ S ′ ⊂ E ∩ S ′, E ∗ E ′ ⊂ E , (2.43)

and in each of these cases the convolution product is linear, symmetric and separately continuous.

(iv) Finally,

Dα(T ∗ S) = (DαT ) ∗ S = T ∗DαS ∀(T, S) ∈ (D′×E ′) ∪ (E ′×D′),∀α ∈ NN , (2.44)

and the same holds for the pairs of parts (ii) and (iii). []

Outline of the proof. The argument uses transposition and the previous results of function convo-

lution. For instance, the inclusion D′ ∗ E ′ ⊂ D′ is an extension of L1
loc ∗ L1

comp ⊂ L1
loc. In order

to prove parts (i) and (ii), one can approximate the distributions by functions of L1
comp use the

convolution properties of functions, and then pass to the limit. Parts (iii) and (iv) can also be

proved via approximation. 2

The convolution provides a procedure for regularizing distributions. For any ε > 0, let us define

a mollifier ρε as in (2.31), and set

uε(x) := u ∗ ρε ∀x ∈ RN ,∀ε > 0. (2.45)

By (2.44), then uε ∈ C∞ for any ε > 0, and uε → u in D′.

Remarks 2.11 (i) In E ′, in D′(R+) and in S ′(R+) the convolution is associative. In general,

assuming that the convolutions (u ∗ v) ∗ w and u ∗ (v ∗ w) are admissible, they coincide if at least

two distributions have compact support. Otherwise this equality may fail: for instance,

(1 ∗ δ′0) ∗H = (1 ∗ δ0)′ ∗H = (1′ ∗ δ0) ∗H = (0 ∗ δ0) ∗H = 0 ∗H = 0,

1 ∗ (δ′0 ∗H) = 1 ∗ (δ0 ∗H)′ = 1 ∗ (δ0 ∗H ′) = 1 ∗ (δ0 ∗ δ0) = 1 ∗ δ0 = 1.
(2.46)

(ii) The shift operator coincides with the convolution with the translated δ0, that is,

τhφ = φ ∗ δ−h ∀φ ∈ C0, ∀h ∈ RN . (2.47)

In particular δa ∗ δb = δa+b, for any a, b ∈ RN .

(iii) By means of (2.44) we can represent any linear partial differential operator with constant

coefficients P (D) =
∑
|α|≤m aαD

α as a convolution: as δ0 ∈ E ′,

P (D)u = P (D)(u ∗ δ0) = u ∗ P (Dδ0) ∀u ∈ D′. 2 (2.48)

The next result has important applications in the theory of filters.

* Theorem 2.12 If Φ : D → C∞ is linear and continuous and if τhΦ = Φτh for any h ∈ RN , then

there exists one and only one u ∈ D′ such that Φ(v) = u ∗ v for any v ∈ D. []
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3 The Fourier Transform in L1

Integral transforms. Next we outline some features that characterize a large number of integral

transforms. These are linear integral operators T that typically act on functions RN → C, and

have the form

(T u)(ξ) =

∫
RN

K(ξ, x)u(x) dx ∀ξ ∈ RN , (3.1)

for a prescribed kernel K : R2N → C, and for any transformable function u. We postpone the

specification of regularity properties, and here briefly illustrate some of the main properties of

these transforms.

(i) Inversion. Under appropriate restrictions, there exists another kernel K̃ : R2N → C such that∫
RN

K̃(x, ξ)K(ξ, y) dξ = δ0(x− y) ∀x, y ∈ RN . (3.2)

Denoting by T̃ the integral operator associated to K̃, we thus have T̃ T u = T T̃ u = u for any

transformable u, that is, T̃ = T −1 (once the domains of these operators are suitably specified).

(ii) Commutation formula. Any integral transform is associated to a class of linear operators,

typically of differential type. For any such operator, L, there exists a function L̃ = L̃(ξ) such that

T Lu = L̃ · T u (3.3)

for any transformable function u. That is, T LT −1 = L̃·.
For any prescribed transformable function f , the equation Lu = f is then transformed to the

algebraic equation

L̃(ξ) · û(ξ) = f̂(ξ) ∀ξ (û := T u, f̂ := T f).

If L̃(ξ) 6= 0 for any ξ, then û = f̂/L̃ pointwise, whence u = T̃ (f̂/L̃). This procedure is at the basis

of what is called symbolic (or operational) calculus.

An example: Fourier series. The operator that maps any locally integrable periodic function

u : R→ C (e.g., of period 2π) to the sequence of its Fourier coefficients

ck :=
1

2π

∫ π

−π
f(x)e−ikx dx ∀k ∈ Z (3.4)

is an integral transform, that here we denote by T . Formally, the Fourier series

S(x) =
∑
k∈Z

cke
ikx ∀x ∈ R (3.5)

is its inverse. This series is an integral w.r.t. the counting measure (the measure that associates

to any subset of Z the number of its elements). Several functional setups can be provided. As we

saw, the Hilbert formulation in L2(−π, π) is especially convenient.

For any 2π-period function f , let us consider the differential equation

m∑
n=0

anD
nu = f ∀t ∈ R (a0, ..., am ∈ C) (3.6)
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Note that, under suitable assumptions of regularity,

Dnu = Dn
∑
k∈Z

cke
ikx =

∑
k∈Z

(ik)ncke
ikx ∀n ∈ N. (3.7)

Let us assume that the function f can also be represented as a Fourier series: f(x) =
∑

k∈Z bke
ikx

for any x. Let us also define the characteristic polynomial P (s) =
∑m

n=0 ans
n for any ∈ R. The

equation (3.6) thus reads ∑
k∈Z

P (ik)cke
ikx =

∑
k∈Z

bke
ikx ∀x ∈ R. (3.8)

If P (ik) 6= 0 for any k ∈ Z, then (3.8) is equivalent to

P (ik)ck = bk that is, ck = bk/P (ik) ∀k ∈ Z. (3.9)

For instance, for the differential equation u − D2u = f the characteristic polynomial reads

P (ik) = 1 + k2. As P (ik) = 1 + k2 6= 0 for any k ∈ Z, (3.9) defines the solution operator f 7→ u.

The Fourier transform in L1. We shall systematically deal with spaces of functions RN → C,

and write L1 in place of L1(RN ), C0 in place of C0(RN ), and so on. For any u ∈ L1, we define the

Fourier transform (also called Fourier integral) û of u by

û(ξ) := (2π)−N/2
∫
RN

e−iξ·xu(x) dx ∀ξ ∈ RN ; (3.10)

here ξ · x :=
∑N

i=1ξixi.
14 This is a Lebesgue integral. 15 The variable x may represent space or

(for N = 1) time. The dual variable ξ is interpreted as the vector of frequencies (more precisely,

the frequency is ξ/2π, but we shall omit this distinction).

Different scalings may be used to define this transform. Some authors introduce a factor 2π in

the exponent under the integral, others amend the factor in front of the integral, and so on. All

these transforms are of the form u 7→ A
∫
RN e

−iBξ·xu(x) dx, for some real constants A,B > 0. Each

of these definitions may simplify some formulas, but none is able to simplify all formulas. Our

choice is maybe the most frequently used in analysis.

In engineering applications one often uses u 7→
∫
RN e

−i2πξ·xu(x) dx. For N = 1, in the latter case

ξ represents frequency, namely the number of cycles in the unit time. In (3.9) ξ represents angular

frequency (also called radian frequency), namely the angle in the unit time. Here we shall use the

term frequency in all cases.

Proposition 3.1 The formula (3.10) defines a linear and continuous operator

F : L1 → C0
b : u 7→ û;

‖û‖L∞ ≤ (2π)−N/2‖u‖L1 ∀u ∈ L1.
(3.11)

14 We denote the multiple integral of a function f : RN → C by
∫
RN f(x)dx or just

∫
f(x)dx. Alternative notations

are e.g.
∫∫

RN f(x) dx or
∫∫

RN f(x) dx1...dxN .
15 This integral thus converges absolutely, and also coincides with its principle value:

∫
RN e−iξ·xu(x) dx =

limA→+∞
∫
]−A,A[N

e−iξ·xu(x) dx.
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(By C0
b we denote the Banach space C0 ∩ L∞, equipped with the sup-norm.)

Thus ûn → û uniformly in RN whenever un → u in L1. In passing notice that, for any u ∈ L1,

(denoting by H the Heaviside function)

û(0) = (2π)−N/2
∫
RN

u(x) dx = (2π)−N/2 lim
t→+∞

(u ∗H)(t),

u ≥ 0 ⇒ ‖û‖C0
b
≤ (2π)−N/2‖u‖L1 = û(0) ≤ ‖û‖C0

b
.

Apparently, no simple condition characterizes the image set F(L1).

Remark 3.2 For any u ∈ L1, (3.10) also reads

û(ξ) = (2π)−N/2
∫
RN

cos(ξ ·x)u(x) dx− i(2π)−N/2
∫
RN

sin(ξ ·x)u(x) dx (3.12)

for any ξ ∈ RN . Defining what are called cosine transform and sine transform respectively by

Cu(ξ) = (2/π)−N/2
∫
RN

cos(ξ ·x)u(x) dx ∀ξ ∈ RN , ∀u ∈ L1, (3.13)

Su(ξ) = (2/π)−N/2
∫
RN

sin(ξ ·x)u(x) dx ∀ξ ∈ RN , ∀u ∈ L1, (3.14)

we thus have

û = Cu − iSu ∀u ∈ L1. (3.15)

Therefore, for any u ∈ L1,

u is even ⇔ Su = 0 ⇔ û(ξ) = Cu(ξ) ∀ξ ∈ RN , (3.16)

u is odd ⇔ Cu = 0 ⇔ û(ξ) = −iSu(ξ) ∀ξ ∈ RN . (3.17)

The functions Cu and Su are real valued iff u(x) ∈ R for any x. Above the Fourier series of

periodic functions were similarly decomposed into the sum of a cosine series and a sine series. 2

The following formulas mimic those we derived for the Fourier series, and have the same basis:

the properties of the exponential functiona x 7→ e−iξ·x. 16

16 For any ξ ∈ RN , let us set eξ(x) := e−iξ·x for all x ∈ RN . These functions map the additive group (RN ,+) to
the multiplicative group (C, ·), and are called characters. Their properties are the basis of those of Fourier series and
Fourier transform.
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Proposition 3.3 For any u ∈ L1, 17

v(x) = u(x− y) ⇒ v̂(ξ) = e−iξ·yû(ξ) ∀y ∈ RN , (3.18)

v(x) = eix·ηu(x) ⇒ v̂(ξ) = û(ξ − η) ∀η ∈ RN , (3.19)

v(x) = u(x) ⇒ v̂(ξ) = û(−ξ), (3.20)

u is real ⇒ û(−ξ) = û(ξ), (3.21)

u is imaginary ⇒ û(−ξ) = −û(ξ), (3.22)

u is even ⇒ û is even, (3.23)

u is odd ⇒ û is odd, (3.24)

u is radial ⇒ û is radial, (3.25)

v(x) = u
(
A−1x

)
⇒ v̂(ξ) = |detA| û(A∗ξ) ∀A ∈ RN

2
,detA 6= 0. (3.26)

[Ex]

Remark 3.4 (3.18) and (3.19) establish a duality between the operations of shift and modulation

(namely, multiplication by an oscillating function):

(i) if the argument of the input function is shifted, then the transformed function is modulated;

(ii) conversely, if the input function is modulated, then the transformed function is shifted.

Defining the translation and modulation operators

(Tyu)(x) = u(x− y), (Myu)(x) = eiξ·yu(x) ∀x, y ∈ RN , ∀u ∈ L1, (3.27)

(3.18) and (3.19) read

T̂yu = M−yû, M̂ηu = Tηû ∀y ∈ RN , ∀u ∈ L1. (3.28)

This entails

T̂yMηu = M−yTηû, M̂ηTyu = TηM−yû ∀y, η ∈ RN ,∀u ∈ L1. 2 (3.29)

Henceforth by D (or Dj or Dα) we shall denote the operation of derivation in the sense of

distributions.

Lemma 3.5 Let j ∈ {1, ..., N}. If ϕ,Djϕ ∈ L1 then
∫
RN Djϕ(x) dx = 0.

Proof. Let us recall the definition (1.2) of the bell-shaped function ρ, and set

θn(x) := ρ
(
x/n

)
∀x ∈ RN ,∀n ∈ N. (3.30)

As each function θn has compact support, by partial integration∣∣∣ ∫
RN

[
Djϕ(x)

]
θn(x) dx

∣∣∣ =
∣∣∣ ∫

RN
ϕ(x)Djθn(x) dx

∣∣∣ ≤ 1

n
‖ϕ‖L1 · ‖Djρ‖∞ → 0

as n→∞. Since θn(x)→ 1 pointwise in RN , by dominated convergence 18 we then conclude that∫
RN

Djϕ(x) dx = lim
n→∞

∫
RN

[
Djϕ(x)

]
θn(x) dx = 0.

In passing note that shift and modulation operators are isometries in Lp for any p ∈ [1,+∞]. 2

17 For any A ∈ RN
2

, we set (A∗)ij := Aji for any i, j. For any z ∈ C, we denote its complex conjugate by z. We

say that u is radial iff u(Ax) = u(x) for any x and any orthonormal matrix A ∈ RN
2

(i.e., with A∗ = A−1).
18 We shall often apply this theorem to justify loose calculations via regularization.
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• Theorem 3.6 (Differentiation formulas) For any m ∈ N,

Dα
xu ∈ L1 ∀|α| ≤ m ⇒ (iξ)αû = (Dα

xu)̂ ∈ C0
b ∀|α| ≤ m, (3.31)

xαu ∈ L1 ∀|α| ≤ m ⇒ Dα
ξ û = [(−ix)αu]̂∈ C0

b ∀|α| ≤ m. (3.32)

Proof. In both cases it suffices to prove the equality for any first-order derivative; the general case

then follows by induction.

(i) Let us fix any j ∈ {1, ..., N}. As

Dj [e
−iξ·xu(x)] = −iξje−iξ·xu(x) + e−iξ·xDju(x) ∀x ∈ RN ,

the integrability of u and Dju entails that Dj [e
−iξ·xu(x)] ∈ L1. It then suffices to integrate the

latter equality over RN , and to notice that
∫
RN Dj [e

−iξ·xu(x)] dx = 0 by Lemma 3.5. Finally

(Dα
xu)̂ ∈ C0

b , by Proposition 3.1.

(ii) Let us denote by ej the unit vector in the jth direction. By applying the classical formula
eis−e−is

2i = sin s with s = txj/2, we have

û(ξ + tej)− û(ξ)

t
=

∫
RN

e−i(ξ+tej)·x − e−iξ·x

t
u(x) dx

= −i
∫
RN

e−i(ξ·x+txj/2) sin(txj/2)

t/2
u(x) dx.

Passing to the limit as t→ 0, by the dominated convergence theorem we then get

û(ξ + tej)− û(ξ)

t
→ −i

∫
RN

e−iξ·xxju(x) dx = −i(xju)̂(ξ) ∀ξ.

By Proposition 3.1, this is an element of C0
b . 2

* Remarks 3.7 (i) One can transform differential operators with constant coefficients of any inte-

ger order m. For any family {cα : |α| ≤ m} ⊂ C, let us define the operator P (D) :=
∑
|α|≤m cαD

α.

By (3.31) and (3.32),

F(P (D)u) = [P (iξ)F(u)] ∀u ∈ S. (3.33)

(ii) Defining the multiplicative operators

(Xu)(x) = ixu(x), (Ξu)(ξ) = iξu(ξ), ∀x, ξ ∈ RN , ∀u ∈ L1, (3.34)

(3.31) and (3.32) respectively read

u,Dα
xu ∈ L1 ⇒ Ξαû = (Dα

xu)̂ ∈ C0
b , (3.35)

u, xαu ∈ L1 ⇒ Dα
ξ û = [(−X)αu]̂∈ C0

b . (3.36)

This shows that the Fourier transform establishes a duality between differentiation and the above

multiplicative operators.

(iii) Differentiation w.r.t. either x or ξ and the multiplicative operators Ξ and X are the generators

respectively of the shift and modulation semigroups. This duality is then at the basis of the duality

between those semigroups, that we pointed out in Remark 3.4, and conversely.

(iv) Because of (3.31), differential operators amplify high frequency components and attenuate

low frequency ones. The inverse operation of integration therefore attenuates high frequencies and

amplifies low frequencies. 2
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• Corollary 3.8 (Smoothness vs. decay principle) Let m ∈ N0.

(i) If Dα
xu ∈ L1 for any α ∈ NN0 with |α| ≤ m, then (1 + |ξ|)mû(ξ) ∈ C0

b .

(ii) If (1 + |x|)mu ∈ L1, then û ∈ Cm and Dαû ∈ C0
b for any α with |α| ≤ m. [Ex]

Remark 3.9 This result entails that

(i) the more u is regular, the faster |û| decays at infinity, and conversely;

(ii) the faster |u| decays at infinity, the more û is regular, and conversely. 2

Examples. (i) For N = 1, 19

u = χ[−A,A] ⇒ û(ξ) =
√

2/π [sin(Aξ)]/ξ ∀ξ ∈ RN . (3.37)

(ii) We claim that for any a > 0

u(x) = exp(−a|x|2) ∀x ∈ RN ⇒
û(ξ) = (2a)−N/2 exp(−|ξ|2/(4a)) ∀ξ ∈ RN .

(3.38)

Let us first prove this statement for a = 1/2 and N = 1. As Dxu = −xu for any x ∈ RN ,

iξû(ξ)
(3.31)

= D̂xu(ξ) = −̂xu(ξ)
(3.32)

= −iDξû(ξ),

that is, Dξû = −ξû for any ξ ∈ RN . The functions u and û thus solve the same first-order

differential equation. On the other hand, by the classical Poisson formula
∫
R exp(−y2) dy =

√
π,

û(0) = (2π)−1/2

∫
R
e−x

2/2 dx = 1.

As u(0) = 1, we see that û solves the same Cauchy problem as u. Therefore for N = 1

u(x) = exp(−x2/2) ∀x ∈ R ⇒ û(ξ) = exp(−ξ2/2) ∀ξ ∈ R. (3.39)

For N > 1 and still for a = 1/2, u(x) = exp(−|x|2/2) =
∏N
j=1 exp(−x2

j/2). Therefore

û(ξ) = (2π)−N/2
∫
e−iξ·xe−|x|

2/2 dx = (2π)−N/2
∫
...

∫
e
∑N
j=1(−iξjxj+x2j/2) dx1...dxN

=

N∏
j=1

{
(2π)−1/2

∫
e−iξjxje−x

2
j/2 dxj

}
(3.39)

=

N∏
j=1

e−ξ
2
j /2 = e−|ξ|

2/2 ∀ξ ∈ RN .

This concludes the proof of (6.25) for a = 1/2. (6.25) then follows from (3.26).

The next theorem mimics a property that we saw for Fourier series (the same applies to several

other results of Fourier theory).

Theorem 3.10 (Riemann-Lebesgue) For any u ∈ L1, û is uniformly continuous in RN , and

û(ξ)→ 0 as |ξ| → +∞.

19 The cardinal sinus function sinc v := sin(πv)/πv for any v ∈ R plays an important role in Signal Analysis, as
we shall see.
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Proof. For any u ∈ L1, there exists a sequence {un} in D such that un → u in L1. By part (i) of

Corollary 3.8, for any n then ûn(ξ) → 0 as |ξ| → +∞. The same holds also for û, since ûn → û

uniformly in RN by Proposition 3.1. 20 As û is continuous, it is then uniformly continuous. 2

Remarks 3.11 (i) This theorem entails that, for any interval ]a, b[⊂ R,∫ b

a
einxu(x) dx→ 0 as n→ ±∞,∀u ∈ L1(a, b). (3.40)

This is easily checked by extending u to R with vanishing value outside the interval]a, b[, and

noticing that this integral is proportional to û(−n). By the Riemann-Lebesgue Theorem then

û(−n)→ 0 as n→∞. Thus eix → 0 weakly star in L∞(a, b), and of course the same holds for the

real and imaginary parts of eix: cos(nx)→ 0, sin(nx)→ 0 weakly star in L∞(a, b).

(ii) For any T > 0, any u ∈ L1(0, T ) can be developed in Fourier series:

u(x) =
∑
k∈Z

cke
i2πkx/T for a.e. x ∈ ]0, T [,

ck =
1

T

∫ T

0
u(x)e−i2πkx/T dx ∀k ∈ Z.

(3.41)

By the Riemann-Lebesgue Theorem, ck → 0 as k → ±∞. 2

The space L1 can be identified with a normed subspace of the dual space of C0
b via the duality

pairing (u, v) 7→
∫
RN u v dx. As by Proposition 3.1 F a linear and continuous operator L1 → C0

b ,

one can define the formal adjoint Fτ : L1 → L∞ by the formula∫
RN
F(u) v dx =

∫
RN

uFτ (v) dx ∀u, v ∈ L1. (3.42)

• Theorem 3.12 (Parseval) The formal adjoint of F coincides with F itself, 21 that is,∫
RN

û v dx =

∫
RN

u v̂ dx ∀u, v ∈ L1. (3.43)

Proof. By the theorems of Tonelli and Fubini, for any u, v ∈ L1∫
RN

û(y)v(y) dy = (2π)−N/2
∫∫

RN×RN
e−iy·xu(x)v(y) dx dy =

∫
RN

u(y)v̂(y) dy.2

• Theorem 3.13 (First convolution formula) 22

u∗v ∈ L1, and û∗v = (2π)N/2û v̂ ∀u, v ∈ L1. (3.44)

20 Here is an alternative argument. By direct evaluation of the integral one can check that the assertion holds for
the characteristic function of any N -dimensional interval [a1, b1]× · · · × [aN , bN ]. It then suffices to approximate u in
L1 by a sequence of finite linear combinations of characteristic functions of N -dimensional intervals.

21 One cannot say that F is self-adjoint, since this terminology is used just for Hilbert spaces.
22 A second convolution formula reads ûv = (2π)−N/2û ∗ v̂, but it requires rather restrictive assumptions for
F : L1 → C0

b . Dealing with the extensions of the Fourier transform, we shall meet a set-up in which this second
formula holds without restrictions.
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Proof. By the change of integration variable z = x− y, for any u, v ∈ L1,

û∗v(ξ) = (2π)−N/2
∫∫

RN×RN
e−iξ·xu(x− y)v(y) dx dy

= (2π)−N/2
∫
RN

e−iξ·zu(z) dz

∫
RN

e−iξ·yv(y) dy

= (2π)N/2û(ξ)v̂(ξ). 2

Next we present the inversion formula for the Fourier transform. First, we introduce what is

called the conjugate Fourier transform: 23

F̃(v)(x) := (2π)−N/2
∫
RN

eiξ·xv(ξ)dξ ∀v ∈ L1, ∀x ∈ RN . (3.45)

This operator differs from F just in the sign of the imaginary unit. Obviously, F̃v = F v̄ for any

v ∈ L1. 24 Clearly the properties of F̃ mimic those of F , up to a change in the sign of the imaginary

unit i. For instance,

u,Dα
xu ∈ L1 ⇒ (iξ)αũ = (−Dα

xu)̃ ∈ C0
b , (3.46)

u, xαu ∈ L1 ⇒ Dα
ξ ũ = [(ix)αu]˜∈ C0

b (3.47)

can be compared with (3.31) and (3.32).

Theorem 3.14 (Inversion) For any u ∈ L1 ∩ C0
b , if F(u) ∈ L1 then

u(x) = F̃ [F(u)](x) = F [F̃(u)](x) ∀x ∈ RN . (3.48)

Proof. Let us set v(x) := exp(−|x|2/2) for any x ∈ RN . As F(u) ∈ L1, by the Tonelli and Fubini

theorems we have∫
RN

û(ξ)v(ξ)eiξ·x dξ = (2π)−N/2
∫∫

RN×RN
u(y)e−iξ·yv(ξ)eiξ·x dy dξ

=

∫
RN

u(y)v̂(y − x) dy =

∫
RN

u(x+ z)v̂(z) dz ∀x ∈ RN .

Let us now replace v(ξ) by vε(ξ) := v(εξ), for any ε > 0. By (6.25), v̂ε(z) = ε−N v̂(ε−1z); by a

further change of variable of integration, we then get∫
RN

û(ξ)v(εξ)eiξ·x dξ =

∫
RN

u(x+ εy)v̂(y) dy ∀x ∈ RN .

As u and v are continuous and bounded, by the dominated convergence theorem we can pass to

the limit under integral as ε→ 0, obtaining

v(0)

∫
RN

û(ξ)eiξ·x dξ = u(x)

∫
RN

v̂(y) dy. (3.49)

23 By this definition, in general the conjugate Fourier transform of a function is not the conjugate of the Fourier
transform of that function. Actually, F̃(v) = F(v) only if v is real-valued.

24 By z̄ we denote the complex conjugate of any z ∈ C.

29



On the other hand, by (6.25)∫
RN

v̂(y) dy =

∫
RN

exp(−|y|2/2) dy =

(∫
R

exp(−s2/2) ds

)N
= (2π)N/2.

As v(0) = 1, (3.49) then yields
∫
RN û(ξ)eiξ·x dξ = u(x), that is, F̃ [F(u)] = u. The proof of

F [F̃(u)] = u is similar. 2

Remarks 3.15 (i) By a more refined argument one might show that (3.48) holds under the only

hypotheses that u, û ∈ L1, see Rudin [Ru1 186]. (Of course, a posteriori one then gets that

u, û ∈ C0
b .)

(ii) By Theorem 3.14, F(u) ≡ 0 only if u ≡ 0; hence the Fourier transform L1 → C0
b is injective.

Under the assumptions of this theorem, we also have

̂̂u(x) = ū(−x) ∀x ∈ RN . (3.50)

(iii) However the formula (3.48) does not yield an authentic inversion theorem, since we have not

characterized the image set F(L1). 2

* The Fourier-Laplace transform. Under suitable assumptions, Fourier transformed functions

can be extended to holomorphic functions of several complex variables: CN → C, that is, functions

that are separately holomorphic with respect to each variable. We denote the space of these

functions by Cω(CN ). This extended operator is called Fourier-Laplace transform, for reasons that

will be clear after introducing the Laplace transform in the next chapter.

For any z ∈ CN , let us set |z| =
(∑N

i=1 |zi|2
)1/2

, Im(z) = (Im(z1), ..., Im(zN )) ∈ RN , and define

Re(z) ∈ RN similarly (thus |z|2 6= z ·z). By B(0, R) we still denote the ball of RN with center the

origin and radius R.

Theorem 3.16 (Holomorphy) If u ∈ L1 and eλ|x|u ∈ L1 for some λ > 0, then F(u) can be

extended to a (necessarily unique) holomorphic function û : (R× iB(0, λ))N → C:

û(z) := (2π)−N/2
∫
RN

e−iz·xu(x) dx ∀z ∈ RN ; (3.51)

Proof. Here we assume that N = 1; however the argument is easily extended to any N . Setting

M(z) := sup
x∈R

{
|x|e|x|[λ+Im(z)]} (< +∞) ∀z ∈ R× iB(0, λ), (3.52)

and applying the mean value theorem to the complex function h 7→ (e−ih·x − 1)/h, we have∣∣∣e−i(z+h)·x − e−iz·x

h

∣∣∣ =
∣∣∣e−iz·x∣∣∣ ∣∣∣e−ih·x − 1

h

∣∣∣ = .......

≤ e| Im(z)| |x||x| sup
t∈[0,1]

et Im(h)|x| ≤M(z)eλ|x| ∀z ∈ R× iB(0, λ). [Ex]
(3.53)

By dominated convergence, for any z ∈ R× iB(0, λ) one then has

û′(z) = lim
C3h→0

(2π)−N/2
∫
e−i(z+h)·x − e−iz·x

h
u(x) dx

= −(2π)−N/2ix

∫
e−iz·xu(x) dx. 2

(3.54)
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Remarks 3.17 (i) As we already remarked, the support of any holomorphic function different

from the null function coincides with the whole R.

(ii) Theorem 3.6 and other results also hold for the Fourier-Laplace transform û in its domain of

holomorphy, A. In particular, by analytic extension one gets

u,Dα
xu ∈ L1 ⇒ (iz)αû(z) = (Dα

xu)̂(z) ∀z ∈ A, (3.55)

u, xαu ∈ L1 ⇒ Dα
z û(z) = [(−ix)αu] (̂z) ∀z ∈ A. 2 (3.56)

Next we assume that the support of u is bounded, and provide an estimate on the growth at

infinity of û and of its derivatives.

Proposition 3.18 If u ∈ L1 and suppu ⊂ B(0, R) for some R > 0, then F(u) can be extended to

a (necessarily unique) holomorphic function û : CN → C such that

|Dαû(z)| ≤ (2π)−N/2R|α|eR| Im(z)|‖u‖L1 ∀z ∈ CN ,∀α ∈ NN . (3.57)

Proof. By Theorem 3.16, û can be extended to a unique holomorphic function (which we still

denote by û) defined on the whole CN . By (3.56),

|Dαû(z)| = (2π)−N/2
∣∣∣ ∫ (−ix)αe−iz·xu(x) dx

∣∣∣
≤ (2π)−N/2

∫
B(0,R)

|(−ix)α||e−iz·x||u(x)| dx

≤ (2π)−N/2R|α|eR| Im(z)|‖u‖L1 ∀z ∈ CN . 2

(3.58)

Next we state a deeper classical result, which provides a necessary and sufficient condition for

existence of the holomorphic extension.

Theorem 3.19 (Paley-Wiener) Let u ∈ L1 and R > 0. Then the following two conditions are

equivalent:

(i) u ∈ C∞
(
RN
)

and suppu ⊂ B(0, R);

(ii) F(u) can be extended to a (necessarily unique) holomorphic function û : CN → C such that

∀m ∈ N, ∃C > 0 : ∀z ∈ CN |û(z)| ≤ C eR| Im(z)|

(1 + |z|)m
. (3.59)

(The constant C may depend on u and m.)

Proof of “(i) ⇒ (ii)”. By condition (i), for any α ∈ NN , u,Dα
xu ∈ L1. By (3.55), then

|zα||û(z)| = (2π)−N/2
∣∣∣ ∫

B(0,R)
e−iz·xDαu(x) dx

∣∣∣ ≤ (2π)−N/2eR| Im(z)|‖Dαu‖L1 ∀z ∈ CN .

Therefore, for any m ∈ N there exists a constant C > 0 (which will depend on u and m) such that

|û(z)| ≤ CeR| Im(z)|(1 + |z|)−m ∀z ∈ CN .2

Remark 3.20 Let us consider the Gaussian function u(x) = exp(−a|x|2) for x ∈ RN , and recall

that û(ξ) is also a Gaussian, see (6.25). By Theorem 3.16, û can be extended to a holomorphic

function CN → C, but by the Paley-Wiener Theorem the extension does not fulfill the estimate

(3.59). (Notice that û(z) is obtained from û(ξ) replacing |ξ|2 by z ·z, not by |z|2 = z ·z̄.) 2
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3.1 Overview and Commentaries

The Fourier transform in L1. We defined the classic Fourier transform F : L1 → C0
b and

derived its basic properties. In particular, under suitable restrictions, we saw the following. Some

of these restrictions will be removed in the extensions that we introduce in the next section.

(i) Differentiation formulas. F transforms partial derivatives to multiplication by powers of

the independent variable (up to a multiplicative constant) and conversely. This is at the basis of

the application of the Fourier transform to the study of linear partial differential equations with

constant coefficients, that we shall outline ahead.

(ii) Smoothness vs. decay principle. F establishes a correspondence between the regularity of

u and the order of decay of û at ∞, and conversely between the order of decay of u at ∞ and

the regularity of û. 25 If u decays exponentially then the Fourier transform can be extended

to an entire holomorphic function CN → C. Further asymptotic information is provided by the

Riemann-Lebesgue theorem.

(iii) Parseval’s theorem. The formal adjoint of F coincides with F .

(iv) Convolution formula. F transforms the convolution of two functions to the product of

their transforms, up to a multiplicative constant.

(v) Inversion. Under suitable regularity assumptions, the conjugate Fourier transform plays

the role of inverse of Fourier transform. However, it does not seem easy to determine the image set

F(L1) ⊂ C0
b .

The properties of the conjugate transform are analogous to those of the transform, because of

the similarity between the two definitions.

The inversion formula (3.48) also provides an interpretation of the Fourier transform. (3.48)

represents u as a weighted average of the harmonic components x 7→ eiξ·x (plane waves). 26 For

any ξ ∈ RN , û(ξ) is the amplitude of the component having vector frequency ξ (that is, frequency ξi
in each direction xi).

27 Therefore any function which fulfills (3.48) can equivalently be represented

by specifying either the value u(x) at a.e. points x ∈ RN , or the amplitude û(ξ) for a.e. frequencies

ξ ∈ RN .

The analogy between the Fourier transform and the Fourier series is obvious, and will be briefly

discussed at the end of the next section.

However, the Fourier transform cannot be interpreted as a spectral decomposition in the Hilbert

space L2 in the customary sense, at variance with the Fourier series. Indeed the functions eξ(x) :=

e−iξ·x do not form an orthogonal family; actually, they are not even elements of L2. (They are

elements of L2 and of S, but these are not Hilbert space.)

Symmetries of the Fourier transform. (i) The transform of the shift is the modulation of the

transform, and dually the transform of the modulation is the shift of the transform; see (3.28).

(ii) The transform of the derivative is the transform of the original function multiplied by the

variable, and dually the transform of the function multiplied by the variable is the derivative of the

transform (changed of sign); see (3.31), (3.32).

25 The Reader will notice that this principle establishes a strict relation between the qualitative property of
smoothness and the quantitive property property of decay at infinity.

26 This is especially clear in L2. However these functions do not form an orthogonal basis, for the simple reason
that they are not elements of that space.

27 It is usual to use the term frequency, but ξ is rather the pulsation or angular frequency (expressed in radians).
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(iii) The more the function is regular, the faster the transform decays at infinity; and dually the

faster the function decays at infinity, the more the transform is regular; see Remark 3.7.

(iv) The transform coincides with its formal adjoint, see Parseval Theorem 3.12.

(v) The transform of a convolution coincides with the pointwise product of the transforms; see

(3.44).

(vi) The conjugate transform is the inverse of the transform, under suitable restrictions; see the

Inversion Theorem 3.14.

(vii) The transform F and the conjugate transform F̃ fulfills analogous properties, just with −i
in place of i.

4 Extensions of the Fourier Transform

Fourier transform of measures. The Fourier transform can be extended to any finite complex

Borel measure µ on RN . This is a σ-additive measure defined on the σ-algebra B of Borel subsets

of RN , having finite total mass supA∈B |µ(A)|.
The Fourier transform can be defined on L1(RN , µ), the space of complex functions that are

µ-integrable in the sense of Lebesgue. Formally, this simply corresponds to replacing f(x) dx by

dµ(x) in (3.10). This is called the Fourier-Stieltjes transform.

Most of the previously established properties hold also in this more general set-up. For instance,

transformed functions are still elements of C0
b . They fulfill the same properties of transformation of

derivatives and multiplication by a power of x, the Parseval theorem and the convolution formulas.

The Riemann-Lebesgue Theorem 3.10) instead fails: e.g.,

δ̂y(ξ) = (2π)−N/2e−iξ·y ∀y ∈ RN , (4.1)

which does not vanish as |ξ| → +∞. In particular, δ̂0(ξ) = (2π)−N/2.

We do not go on along this line, since this is a particular case of a more general extension of the

Fourier transform that we are going to introduce.

Fourier transform in S. For any u ∈ D, by Theorem 3.19 û is holomorphic. If û ∈ D then it has

compact support, so that û ≡ 0, by the theorem of analytic continuation. By the inversion formula

(3.48) then u ≡ 0. In conclusion,

u, û ∈ D ⇒ u ≡ 0.

The Fourier transform thus does not map D to itself. This means that the set of frequencies of

the harmonic components of any non-identically vanishing u ∈ D is unbounded. In other terms,

any nontrivial u ∈ D has harmonic components of arbitrarily large frequencies. This induced

L. Schwartz to introduce the space of rapidly decreasing functions S, and to extend the Fourier

transform to this space and to its dual. Next we review the tenets of that theory. We shall operate

several identifications, and omit to display restrictions.

In order to construct an operator that acts and is invertible in the same space, we shall use a

procedure based on transposition. First, we shall restrict F to the space of rapidly decreasing

functions, S; F operates in this space, and is linear and continuous. By Proposition XXX, we can

identify S ′ with a dense subset of D′. By transposition, we shall then extend F to an operator

acting in S ′. Finally, we shall see that F̃ operates in L2.

In S the Fourier transform fulfills all the properties that we saw in L1. Here we also have a

second convolution formula, (4.7), which in general is meaningless for u, v ∈ L1.
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Proposition 4.1 (The restriction of) F maps S to S, is continuous, and is invertible:

F−1 = F̃ in S. (4.2)

Moreover, for any u, v ∈ S,

(iξ)αû = D̂α
xu, (4.3)

Dα
ξ û = [(−ix)αu] ,̂ (4.4)∫
RN

û v dx =

∫
RN

u v̂ dx, (4.5)

u∗v ∈ S, û∗v = (2π)N/2û v̂ in S, (4.6)

uv ∈ S, ûv = (2π)−N/2û∗v̂ in S. (4.7)

The conjugate Fourier transform F̃ fulfills analogous properties, with −i in place of i in (4.3)

and (4.4).

Proof. The boundedness of F in S is easily checked by repeated use of the Leibniz rule, because the

space S is stable by multiplication by any polynomial and by application of any differential operator

(with constant coefficients). [Ex] 28 For u, v ∈ S, the formulas (4.3)—(4.5) are just particular cases

of (3.31), (3.32), (3.43), since S ⊂ L1. As it is easily checked that uv, u∗v, (u∗v)̂, û∗v̂ ∈ S, the first

convolution formula (4.6) follows from (3.44). By writing (3.44) with û and v̂ in place of u and v,

and with F̃ in place of F , we have

F̃(û∗v̂) = (2π)N/2F̃(û) F̃(v̂) = (2π)N/2u v.

By applying F to both members of this equality, the second convolution formula (4.7) follows.

The final claim of the theorem is obvious. 2

Fourier transform in S′. Next we generalize the Fourier transform to S ′ by extending the

Parseval Theorem 3.12. This is reminiscent of how we generalized differentiation to D′ by extending

the formula of partial integration. Both procedures rest upon transposition of the operator, namely,

here the Fourier transform, and in Section 1 the differentiation.

Let us first define Fτ : S ′ → S ′ to be the transpose operator of F|S : S → S, that is:

〈Fτu, v〉 := 〈u,Fv〉 ∀v ∈ S,∀u ∈ S ′. (4.8)

The conjugate transform F̃τ is similarly extended to S ′ by transposition.

• Theorem 4.2 (i) The operator Fτ : S ′ → S ′ is linear, sequentially continuous, and is the unique

sequentially continuous extension of F to S ′.
(ii) For any u ∈ S ′, denoting Fτ by the hat ( )̂,

(iξ)αû = D̂α
xu, (4.9)

Dα
ξ û = [(−ix)αu] .̂ (4.10)

28 S is the smallest space that contains D and has these properties. Indeed L. Schwartz designed S for use in the
Fourier theory.
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(iii) For any u ∈ S ′ and any v ∈ S,

〈û, v〉 = 〈u, v̂〉 (extended Parseval formula), (4.11)

u∗v ∈ S ′, û∗v = (2π)N/2û v̂ in S ′, (4.12)

uv ∈ S ′, ûv = (2π)−N/2û∗v̂ in S ′. (4.13)

(iv) The operator Fτ is invertible in S ′ and (Fτ )−1 = F̃τ .

(v) The operator F̃τ fulfills properties analogous to those of F̃ .

Proof. 29 (i) By (4.5),

〈Fτu, v〉 = 〈u,Fv〉 =

∫
u(x) [Fv](x) dx =

∫
[Fu](x) v(x) dx ∀u, v ∈ S. (4.14)

Thus Fτ |S = F|S . As S is sequentially dense in S ′, part (i) follows.

(ii) (4.9) and (4.10) are easily derived from the analogous statements for S via transposition.

For instance, we retrieve (3.31) in S ′ as follows, exchanging the role of the dual variables x and ξ.

Let us select any v = v(ξ) ∈ S, and set v̂(x) := (2π)−N/2
∫
RN e

−iξ·xv(ξ) dξ. (3.32) is then replaced

by [(iξ)αv]̂ = (−Dx)αv̂. Via this formula, denoting Fτ (u) by û, we get

S′〈(iξ)αû, v〉S = S′〈û, (iξ)αv〉S = S′〈u, [(iξ)αv]̂ 〉S
= S′〈u, (−D)αv̂〉S = S′〈Dαu, v̂〉S = S′〈D̂α

xu, v〉S ∀u ∈ S ′, ∀v ∈ S.

(3.31) is thus established.

(iii) As S is dense in S ′, (4.11)–(4.13) are also easily checked.

(iv) For any u ∈ S ′, F̃τ [Fτ (u)] = u since

〈F̃τ [Fτ (u)], v〉 = 〈Fτ (u), F̃(v)〉 = 〈u,F [F̃(v)]〉 (4.2)
= 〈u, v〉 ∀v ∈ S. (4.15)

Similarly one can check that Fτ [F̃τ (u)] = u. Thus (F|S)−1 = F̃ |S .

(v) As S is sequentially dense in S ′, part (v) follows from the analogous statement for F̃ . 2

On the basis of the latter theorem, henceforth we shall identify Fτ with F , and F̃τ with F̃ .

For instance, setting eξ(x) = e−iξ·x for any ξ, x ∈ RN ,

δ̂y = (2π)−N/2ey êy(ξ) = (2π)N/2δy ∀y ∈ RN . (4.16)

So we retrieve (4.1). In particular, δ̂0 = (2π)−N/2 and 1̂ = (2π)N/2δ̂0. The Riemann-Lebesgue

theorem thus fails in S ′.
Next we provide a representation of F which is reminiscent of the principal value of Cauchy.

Proposition 4.3 For any u ∈ L1
loc ∩ S ′,

(2π)−N/2
∫

]−R,R[N
e−iξ·xu(x) dx → û(ξ) in S ′, as R→ +∞. (4.17)

29 As S is a dense subspace of S ′, one can also prove this result via regularization.

35



Proof. Let us denote by χR the characteristic function of the N -dimensional interval ] − R,R[N .

Note that uχR ∈ L1 and

(uχR)̂(ξ) = (2π)−N/2
∫

]−R,R[N
e−iξ·xu(x) dx ∀ξ ∈ RN .

It is easily checked that uχR → u in S ′ s R → +∞. The continuity of F in S ′ then yields (4.17).

2

Fourier-Laplace transform in E ′. Next we extend the Fourier-Laplace transform to suitable

distributions. As for ξ ∈ CN \ RN the function e−ix·ξ is unbounded, here we just transform

compactly supported distributions, namely elements of E ′. For any T ∈ E ′, first we define this

transformed function on RN ; afterwards in Theorem 4.5 we extend it to a holomorphic function

defined on the whole CN .

Theorem 4.4 For any T ∈ E ′,

T̂ (ξ) = E ′〈T, e−ix·ξ〉E ∀ξ ∈ RN . (4.18)

* Partial proof. For any ε > 0, let us define the mollifier ρε as in (2.31), set

(T ∗ ρε)(x) := 〈T, ρε(x− ·)〉 ∀x ∈ RN ,

and note that T ∗ ρε ∈ E by (2.43). It is easily checked that T ∗ ρε → T in E ′, hence also in S ′.
Therefore

(T ∗ ρε)̂ → T̂ in S ′. (4.19)

On the other hand, as T ∗ ρε ∈ E and
∫
RN ρε(x) dx = 1, we have∫

RN
e−iξ·x(T ∗ ρε)(x) dx =

∫
RN

e−iξ·x〈Ty, ρε(x− y)〉 dx

=

∫
RN
〈Ty, e−iξ·ye−iξ·(x−y)ρε(x− y)〉 dx

= 〈Ty, e−iξ·y
∫
RN

e−iξ·(x−y)ρε(x− y) dx〉 ∀ξ ∈ RN .

The last equality can be justified by approximation and use of the Fubini theorem. Thus

(T ∗ ρε)̂(ξ) = 〈Ty, e−iξ·y〉ρ̂ε(ξ) ∀ξ ∈ RN . (4.20)

This is a holomorphic function of ξ. Since, as ε→ 0, ρε(ξ)→ δ0 in the space of Borel measures on

RN , ρ̂ε(ξ)→ 1 uniformly on any compact subset of RN . Therefore

(T ∗ ρε)̂(ξ) = 〈Ty, e−iξ·y〉ρ̂ε(ξ)→ 〈Ty, e−iξ·y〉 in S ′.

By (4.19) we then conclude that T̂ (ξ) = 〈Ty, e−iξ·y〉 for any ξ ∈ RN , and this function is holomor-

phic. 2

By the Paley-Wiener Theorem 3.19, the transform of compactly supported C∞-functions has a

holomorphic extension which decays algebraically as |Re(z)| → +∞, and conversely. By the next

result the transform of any T ∈ E ′ has at most algebraic growth, and conversely.
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* Theorem 4.5 (Paley-Wiener-Schwartz) For any T ∈ S ′ and any R ≥ 0, suppT ⊂ B(0, R)

iff F(T ) can be extended to a holomorphic function T̂ : CN → C such that

∃m ∈ N0,∃C > 0 : ∀z ∈ CN |T̂ (z)| ≤ C(1 + |z|)meR| Im(z)|. [] (4.21)

Corollary 4.6 The null function is the only tempered distribution such that its support and that

of its Fourier transform are both limited (in R).

Proof. By the Paley-Wiener-Schwartz Theorem and by analytic continuation, if suppT is bounded

then supp T̂ is a proper subset of R only if T̂ . The dual statement is proved by the same argument.

2

(The constant C may depend on u and m.)

Fourier transform in L2. The operator F : S ′ → S ′ is the point of arrival of our extension of

the Fourier transform. Next we deal with the Fourier transform of Lebesgue spaces, and start from

L2. We show that (the restriction of) F maps L2 to itself, and is an isometric isomorphism in this

space.

• Theorem 4.7 (Plancherel) For any u ∈ S ′, u ∈ L2 iff û ∈ L2.

More precisely, the restriction of F is an isometry in L2, with inverse F̃ :∫
RN

û¯̂v dx =

∫
RN

uv̄ dx, ‖û‖L2 = ‖u‖L2 ∀u, v ∈ L2. (4.22)

Moreover, 30

F(uχR) = (2π)−N/2
∫

]−R,R[N
e−iξ·xu(x) dx→ F(u) in L2,∀u ∈ L2. (4.23)

Proof. Denoting the inverse Fourier transform by the tilde, it is easily checked that

F
(
F(v)

)
= F(F̃(v̄)) = v̄ ∀v ∈ S. (4.24)

By the Parseval theorem, then∫
RN

û¯̂v dx
(3.43)

=

∫
RN

û̄̂v dx =

∫
RN

uv̄ dx ∀u, v ∈ S.

F|S is thus a surjective isometry for the L2-metric. As S ⊂ L2 with continuous and dense injection,

the same holds for F
∣∣
L2 . 2

Remarks 4.8 (i) By (4.23), as R → +∞ F(uχR) → F(u) in measure on any bounded subset of

RN , hence also a.e. along a suitable sequence which may depend on u. But in general F(u) cannot

be represented as an integral.

(ii) We derived the Plancherel theorem from the Parseval theorem. Conversely the Parseval

theorem easily follows from the Plancherel theorem. 2

30 This is reminiscent of the principal value of Cauchy.
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The formulas of Proposition 3.3, the differentiation formulas (3.31) and (3.31), the Parseval

formula (3.43) and the convolutions formulas (4.6) and (4.7) hold for F in L2 without any restriction.

The Riemann-Lebesgue theorem instead fails in L2; as a counterexample it suffices to consider any

u ∈ L2 which does not vanish at infinity, and not that u ∈ F(L2).

Remark 4.9 * If an electric current of density u = u(t) ∈ L2 flows through a resistance R, it

dissipates the instantaneous power R|u(t)|2 and the (total) energy R
∫
R |u(t)|2 dt. Let us assume

that R = 1. If u (6= 0) is periodic of period T then its energy is infinite, and one defines the mean

power

P (t) =
1

T

∫ T/2

−T/2
|u(t)|2 dt. (4.25)

In Signal Theory one calls energy signal (power signal, resp.) a signal of finite energy (finite mean

power, resp.). Note that the mean power of a periodic signal vanishes whenever the energy is finite,

so it is of interest to deal with the mean power only if u 6∈ L2.

The energy of an energy signal is thus distributed in time with energy density |u(t)|2. As by the

Plancherel theorem
∫
R |u(t)|2 dt =

∫
R |û(ξ)|2 dξ, one can also regard the energy as distributed in

frequency with spectral density of energy |û(ξ)|2. Similarly, the power of a power signal is distributed

in time with power density |u(t)|2/T , and is distributed in frequency with power spectral density

|û(ξ)|2/T . This applies for instance to electromagnetic and mechanical (in particular acoustic)

signals.

By the Convolution Theorem, setting v−(t) = v(−t) for any t, one can easily see that

F−1(|û|2) =
√

2π

∫
u(t′)u(t′ − t) dt′ =:

√
2πRuu(t) ∀u ∈ L2. (4.26)

Ruu is called the time autocorrelation function of the signal. 2

* Fourier transform of the triple product L2. For any f, g, h ∈ L2, let us define two types of

triple product:

[f · (g ∗ h)](x) = f(x)

∫
g(y)h(x− y) dy q∀x ∈ R,

[(f · g) ∗ h](x) =

∫
f(y)g(y)h(x− y) dy q∀x ∈ R.

(4.27)

Both are elements of L2, and are different in general; thus this triple product is not associative.

The following formulas show that F transforms the first type into the second type, and vice versa:

F [f · (g ∗ h)] = (2π)−N/2f̂ ∗ ĝ ∗ h = f̂ ∗ (ĝ · ĥ),

F [(f · g) ∗ h] = (2π)N/2f̂ · g · ĥ = (f̂ ∗ ĝ) · ĥ ∀f, g, h ∈ L2.
(4.28)

Fourier transform in Lp for p ∈ [1, 2].

Lemma 4.10

Lq ⊂ Lp + Lr ∀p, q, r ∈ [1,+∞], with p < q < r. (4.29)
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Proof. Setting χu := 1 where |u| ≥ 1 and χu := 0 elsewhere, we have

uχu ∈ Lp, u(1− χu) ∈ Lr, u = uχu + u(1− χu) ∀u ∈ Lq. 2 (4.30)

Theorem 4.11 (Hausdorff-Young) Let p ∈ [1, 2], and set p′ := p/(p−1) if p > 1, p′ =∞ if p = 1.

Then (the restriction of) F is a linear and continuous operator Lp → Lp
′
, and

‖û‖Lp′ ≤ ‖u‖Lp ∀u ∈ Lp. (4.31)

Moreover, setting χu := 1 where |u| ≥ 1 and χu := 0 elsewhere,

F(u) = F(uχu) + F(u(1− χu)) ∈ L∞ + L2 ∀u ∈ Lp. (4.32)

In this case F(u) thus is a regular distribution. Note that F(u) is nonexpansive, and for p > 1

need admit an integral representation. Anyway it can be written as a limit in Lp, similarly to

(4.23).

Proof. The restriction of F : S ′ → S ′ maps L1 to L∞ and L2 to L2, and is continuous in these

spaces. We may thus regard F as an operator L1 +L2 → L∞+L2. The Riesz-Thorin Theorem 2.4

then entails the thesis. Finally, (4.30) yields (4.32). 2

Remarks 4.12 (i) This extended Fourier transform fulfills analogous properties to those of the

original transform, including the formulas of derivatives and multiplication by a power of x, the

Parseval theorem and the first convolution formula, But the Riemann-Lebesgue Theorem, and (for

p < 2) the second convolution formula fail in general.

(ii) For any p ∈ ]1, 2], F : Lp → Lp
′

is injective, because it is the restriction of F : S ′ → S ′. But

F is not surjective. (We know that this fails for p = 1.)

(iii) For any p ∈ ]1, 2], F : Lp → Lp
′

can be represented as a principal value.

(iv) For p ∈ [1, 2], the following scaling argument shows that F maps Lp to Lq with continuity

only if q = p′. Therefore the Fourier transform cannot be further extended to a continuous operator

between Lebsgue spaces. Anyway, for any p ∈ ]2,+∞], F : Lp → S ′ is continuous.

Let u ∈ Lp be such that F(u) ∈ Lq. For any λ > 0, setting uλ(x) := u(λx) for any x, by (3.26)

we have F(uλ) = λ−NF(u)1/λ. Hence, for any u ∈ S \ {0},

‖F(uλ)‖Lq
‖uλ‖Lp

= λ−N
‖F(u)1/λ‖Lq
‖uλ‖Lp

= λN(−1+1/q+1/p) ‖F(u)‖Lq
‖u‖Lp

, (4.33)

and this is uniformly bounded w.r.t. λ iff q = p′. 2

Proposition 4.13 For any p ∈ [1, 2] and any u ∈ Lp,

(2π)−N/2
∫

]−R,R[N
e−iξ·xu(x) dx → û(ξ) in Lp, as R→ +∞. 31 (4.34)

Therefore this integral also converges in measure on all bounded subsets of RN . As R → +∞
along a suitable sequence which may depend on u, it then also converges a.e..

31 This is reminiscent of the principal value of Cauchy.
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Proof. By (4.32) it suffices to prove (4.34) for p = 2. Let us set χR = χ]−R,R[N for any R > 0, and

notice that uχR ∈ L1 ∩ L2 and uχR → u in L2 as R→ +∞. By (4.22) then

(2π)−N/2
∫

]−R,R[N
e−iξ·xu(x) dx = ûχR → û in L2. 2

* Fourier transform of periodic function.

(This part follows the lines of [Gilardi pp. 474-484])

We assume that N = 1, but this discussion could easily be extended to any dimensioon.

First we define the space of T -periodic distributions for any T > 0 :

D′T (R) =
{
u ∈ D′(R) : 〈u, ϕ(·+ T )〉 = 〈u, ϕ〉, ∀ϕ ∈ D′(R)

}
. (4.35)

The shift of a distribution is defined by transposition, so that u(· −T ) = u iff 〈u, ϕ(·+T )〉 = 〈u, ϕ〉
for any ϕ ∈ D′(R). This definition of periodic distributions thus extends that of periodic functions.

D′T (R) is a (sequentially) closed subspace of D′. By the Characterization Theorem 1.1 it is easy

to check that any periodic distribution has finite order.

At variance with the nonperiodic setting, here we have the following result.

Proposition 4.14 Let T > 0. Any T -periodic distribution is tempered, i.e., D′T (R) ⊂ S ′. More-

over, for any sequence {vn} in D′T (R),

vn → v in D′ ⇔ vn → v in S ′. [] (4.36)

See e.g. [Gilardi 474] for the proof.

The relation between Fourier transform and Fourier series is illustrated by the next result, by

which the frequencies of the harmonic components of a periodic distribution are confined to a

discrete set, which consists of multiples of a fundamental frequency. One then says that the

distribution has discrete spectrum.

* Theorem 4.15 (Fourier series in D′) Let u ∈ S ′ and T > 0. Then:

(i) The following three statements are equivalent:

u ∈ D′T , (4.37)

∃{ak}k∈Z ⊂ C : u =
∑
k∈Z

ake
2kπix/T in D′, (4.38)

∃{ak}k∈Z ⊂ C : û =
√

2π
∑
k∈Z

akδ2kπ/T in D′. (4.39)

(ii) The two-sided sequence {ak} is uniquely determined by u ∈ D′T . If moreover u ∈ L1
loc, then

ak =
1

T

∫ T

0
e−2kπix/Tu(x) dx

(
=

√
2π

T
ûχ]0,T [(2kπ/T )

)
∀k ∈ Z. (4.40)

Proof. We just check the final equality: for any u ∈ D′T ∩ L1
loc,

1

T

∫ T

0
e−2hπix/Tu(x) dx

(4.38)
=

∑
k∈Z

ak
T

∫ T

0
e−2hπix/T e2kπix/T dx = ah ∀h ∈ Z. (4.41)
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(This series can be integrated term by term since u ∈ S ′.) 2

The series in (4.38) and the aks are respectively called the Fourier series and the Fourier coeffi-

cients of u. Consistently with what we saw in the chapter devoted to Fourier series, the spectrum

û is often identified with the two-sided sequence {
√

2πak}.

Proposition 4.16 Let T > 0 and {ak} be a two-sided sequence in C.

The series
∑

k∈Z ake
2kπix/T converges in D′ (equivalently, in S ′) iff

∃M,m > 0 : ∀k ∈ Z, |ak| ≤M(1 + |k|m). [] (4.42)

* Theorem 4.17 (Fourier series in L2) Let u be any T -periodic distribution, and the two-sided

sequence {ak} be as in (4.38) or (4.39). Then u|]0,T [ ∈ L2(0, T ) iff {ak} ∈ `2. In this case

‖u|]0,T [‖2L2(0,T ) = T
∑
k∈Z
|ak|2

(
= T‖{ak}‖2`2

)
. (4.43)

Proof. For any u ∈ D′T ∩ L1
loc, by (4.38)

‖u|]0,T [‖2L2(0,T ) =
∑
h,k∈Z

ahak

∫ T

0
e2(k−h)πix/T dx = T

∑
k∈Z
|ak|2. (4.44)

(This series can be integrated term by term since u ∈ S ′.) 2

Remark 4.18 Any periodic distribution has discrete spectrum, but the converse may fail [Gilardi

484]. 2

Overview of the extensions of the Fourier transform. The Fourier transform (3.11) has

a natural extension for any complex Borel measure µ. Loosely speaking, this is just defined by

replacing u(x)dx by dµ in the definition (3.10).

By the Paley-Wiener theorem, D is not transformed to itself by the Fourier transform, so that F
cannot be extended by continuity to the whole D′. However, F maps the Schwartz space S to itself

continuously, so that F can be extended to S ′ by transposition. F maps L2 to itself isometrically

(Plancherel theorem). Moreover, by the Riesz-Thorin Theorem, F is also linear and continuous

from Lp to Lp/(p−1) for any p ∈ ]1, 2]; but this fails for p > 2.

Note: The Fourier transform is a nonsurjective homomorphism between the commutative algebras

(L1, ∗) and (C0
b , ·) (here “·” stands for the product a.e.). By the Riemann-Lebesgue theorem, it is

easily checked that F(L1) is a dense subalgebra of C0
b . The Fourier transform is also an isomorphism

between the commutative algebras (S, ∗) and (S, ·); cf. (4.6), (4.7).

5 Fourier Transform and Ordinary Differential Equations

Let m be a positive integer, a0, ..., am ∈ C (am 6= 0), f : R → C be a given function, and consider

the ODE 32

P (D)u(t) :=

m∑
n=0

anD
nu(t) = f(t) t ∈ R. (5.1)

32 On account of typical applications of this theory, here it is natural to interpret the independent variable x as
time.
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Solutions in L2. If we confine ourselves to functions, it is convenient to assume that f ∈ L2. We

then search for a solution u ∈ L2 having distributional derivatives up to order m also in L2. For the

moment we assume this regularity for u, and shall check it a posteriori. By applying the Fourier

transform to both members of (5.1), we see that the ODE is equivalent to the algebraic equation

m∑
n=0

an(iξ)nû = f̂ ∀ξ ∈ R. (5.2)

Here it is crucial to assume that no root of the polynomial is purely imaginary, i.e.,

(
P (iξ) =

) m∑
n=0

an(iξ)n 6= 0 ∀ξ ∈ R, (5.3)

so that the ODE can equivalently we rewritten as

û(ξ) =
f̂(ξ)

P (iξ)
for a.e. ξ ∈ R. (5.4)

By (5.3), 1/P (iξ) is asymptotic to 1/(am|ξ|m) as |ξ| → +∞. As here N = 1, it is easy to see that

1/P (iξ) ∈ Lp ∀p ∈ ]1,+∞] (p = 1 included if m > 1). (5.5)

As f̂ ∈ L2, we infer that f̂(ξ)/P (iξ) ∈ L2. By applying the inverse Fourier transform F̃ = F−1,

(5.1) is then equivalent to

u = F̃(û) = F̃
(
f̂(ξ)

P (iξ)

)
= F̃

(
1

P (iξ)
· f̂(ξ)

)
a.e. in R. (5.6)

Note that u ∈ L2, which is the condition that we assumed at the beginning and had to check.

Because of the second convolution formula (4.7), that we know to hold also in L2, (5.6) then also

reads

u =
1√
2π
F̃
(

1

P (iξ)

)
∗ F̃(f̂) =

1√
2π
F̃
(

1

P (iξ)

)
∗ f in R. (5.7)

As F̃(1/P (iξ)) ∈ L1, we infer that u ∈ L2,

We have thus proved the following statement.

Proposition 5.1 Let a0, ..., am ∈ C (am 6= 0, m ≥ 1), and f ∈ L2. If (5.3) holds, then (5.7) is

the only solution of the ODE (5.1) in L2.

Remarks 5.2 (i) Here we set the equation on the whole R, without boundary conditions. In this

case the L2-integrability of u replaces the boundary conditions, so that the solution does not include

any constant. 33

(ii) If P (iξ̃) = 0 for some ξ̃ ∈ RN , then the above procedure does not apply. In this case the

homogeneous equation P (D)w = 0 can be studied in S ′, instead of L2.

As P (iξ̃) = 0, there exist an integer n ≤ m and a polynomial Q such that

Q(iξ̃) 6= 0, P (iξ̃) = (ξ − ξ̃)nQ(iξ) ∀ξ ∈ RN . (5.8)

33 This may be understood by recalling that D is dense in L2...
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The homogeneous ODE (5.1) then has the solutions wj(t) = tj−1e−iξ̃t for j = 1, ..., n. For instance,

the equation D2u + a2u = 0 is transformed to P (iξ)û(ξ) = (−ξ2 + a2)û(ξ) = 0. As P (iξ̃) = 0 iff

ξ̃ = ±a, this homogenous equation has then a two dimensional space of solutions in S ′, with basis

u±(x) = e±iax.

In order to find the general solution of the nonhomogeneous ODE P (D)w = 0, it is then necessary

to find a particular solution of this equation. This can be obtained via the classical method of

variation of parameters, but we do not address this issue here.

(iii) In the argument above we transformed the source term f , but the final formula (5.7) is

expressed just in terms of the original function f . Anyway, in some cases it may be convenient to

antitransform f̂(ξ)/P (iξ), as in (5.6).

(iv) The above procedure can be extended to PDEs of the form

P (D)u :=
∑
|α|≤m

aαD
αu = f x ∈ RN (5.9)

with constant complex coefficients aα, provided that P (iξ) 6= 0 for all ξ ∈ RN and m > N/2, so

that 1/P (iξ) ∈ L2. (This is easily checked, since this function is asymptotic to |ξ|−m as |ξ| → +∞).

(v) Here we set the equation in the whole R. Dealing with time evolution, Cauchy problems are

especially relevant for applications, and will be studied via Laplace transform in the next chapter.

2

Time-invariant systems. The differential equation (5.1) can be addressed from the point of view

of system theory. Let us interpret the solution u (that here we assume unique) as the response of

a linear system characterized by the mapping L : f 7→ u. As the coefficients do not depend on x,

this operator is invariant for time shifts: that is, for any h ∈ R, setting τhv = v(· + h), if u = Lf

then τhu = L(τhf). One then says that the system is time-invariant.

Next let us go beyond functions, assume that f, u ∈ S ′, and set h = Lδ0, which is tantamount to∑m
n=0 anD

nh = δ0. If (5.3) is fulfilled, as δ0 is compactly supported we can mimic the derivation

of (5.7). This yields

L : δ0 7→
1√
2π
F̃
(

1

P (iξ)

)
∗ δ0 =

1√
2π
F̃
(

1

P (iξ)

)
=: h. (5.10)

The function h = Lδ0 of (5.7) is called the impulsive response in time (or in space, according to the

meaning of the independent variable x). The function F(h) = [
√

2πP (iξ)]−1 is accordingly called

the impulsive response in frequency (or just the response function),

For any f ∈ S ′, we then rewrite the solution u ∈ S ′ of the equation (5.1) in the form

u = h ∗ f or, in frequency, û =
√

2πĥf̂ =
f̂

P (iξ)
. (5.11)

ĥ is then also called the transfer function of the system (factor
√

2π apart).

Thus it suffices to know h (or equivalently ĥ) to evaluate the response to any admissible input.

In other terms, the impulsive response characterizes the system.

Remarks 5.3 (i) In the theory of linear differential equations a distribution E ∈ D′ such that

P (D)E = δ0 is called a fundamental solution of that equation. This entails that

E ∗ [P (D)u] = u ∀u ∈ E ′, P (D)[E ∗ f ] = f ∀f ∈ E ′. (5.12)
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A classical result states that any differential operator with constant coefficients P (D) 6= 0 has a

fundamental solution.

This is not the unique solution in D′, since this space prescribes no (either explicit or implicit)

restriction on the behaviour at infinity.

(ii) The polynomial P (η) (with η ∈ CN ) is an element of S ′, and is called the characteristic

polynomial of the operator P (D). For ξ ∈ RN the polynomial P (iξ) is also called the symbol of

that operator.

* Distributional solutions. Because of the fundamental theorem of algebra, the characteristic

equation

Q(ξ) := P (iξ) =
m∑
n=0

an(iξ)n = 0

has exactly m (possibly repeated) complex roots. Let us denote by {ξj : j = 1, ..., `} the distinct

complex roots, and by rj the multiplicity of ξj for any j; thus ` ≤ m and r1 + ...+ r` = m. Notice

these ξj ’s need not be real. Therefore

P (iξ) = am
∏̀
j=1

(iξ − iξj)rj ∀ξ ∈ C,

whence

P (D) = am
∏̀
j=1

(D − iξj)rj .34

As

(D − iξj)rj (tk−1eiξjt) = 0 for k = 1, ..., rj , j = 1, ..., `,

the roots {ξj : j = 1, ..., `} are associated to a linearly independent family of m solutions:

uj,k(t) = tk−1eiξjt (k = 1, ..., rj , j = 1, ..., `)

of the homogeneous differential equation
∑m

n=0 anD
nu(t) = 0. Thus{

ξj ∈ R ⇒ uj,1, ..., uj,rj ∈ S ′

ξj 6∈ R ⇒ uj,1, ..., uj,rj ∈ D′ \ S ′
for j = 1, ..., `. (5.13)

We shall distinguish two cases:

(i) If P (iξ) 6= 0 for any ξ ∈ R, then defining the function h as in (5.10) we conclude that

h = F̃(1/P (iξ))/
√

2π is the unique fundamental solution of (5.1) in S ′;

hence u = h ∗ f of (5.1) is the unique solution in S ′,∀f ∈ S ′.
(5.14)

(ii) If instead P (iξ̃) = 0 for some ξ̃ ∈ R, then each of these roots corresponds to a solution

u(x) = eiξ̃x ∈ S ′ of the homogeneous equation (5.1). In this case we are not able to reproduce the

above procedure, but one can show that there exists a solution in u ∈ S ′, 35 and

the fundamental solution is not unique in S ′;

hence the solution of (5.1) also fails to be unique in S ′,∀f ∈ S ′.
(5.15)

34 Here iξj stands for iξjI, where I is the identity operator, and the product represents the composition product.
35 This is a deep theorem of Hörmander.
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Examples. Let us fix any k > 0 and consider two differential equations

u− k2u′′ = f(t), u+ k2u′′ = f(t). (5.16)

These equations are respectively associated to the operators

P1(D) := I − k2D2, P2(D) := I + k2D2 (I: operatore identità),

which in turn correspond to the characteristic polynomials

P1(iξ) = 1 + k2ξ2, P2(iξ) = 1− k2ξ2 (ξ ∈ R).

The hypothesis (5.3) is satisfied by P1(iξ), but not by P2(iξ). The previous analysis may thus

be applied just to the first equation, which therefore has a unique solution in S ′. For the second

equation it is more appropriate to address the initial-value problem rather than the problem on the

whole R, and to use the Laplace transform, as we shall see in the next chapter. This mathematical

aspect also reflects problems that typically arise in engineering applications.

This discussion can be extended to systems of linear ODEs. The extension to linear evolutionary

PDEs with constant coefficients is more complex.

6 Rescaled Fourier Transform

Change in notation. Let us reconsider the definition of Fourier transform:

û(ξ) := (2π)−N/2
∫
RN

u(x)e−iξ·x dx ∀ξ ∈ RN , ∀u ∈ L1, (6.1)

with inverse transform (under suitable restrictions)

u(x) := (2π)−N/2
∫
RN

û(ξ)eiξ·x dξ ∀x ∈ RN . (6.2)

Dealing with Time-Frequency Analysis, Signal Processing, and several other applications of the

Fourier theory, it is customary to rescale this transform as follows:

û(ξ) :=

∫
RN

e−2πiξ·xu(x) dx ∀ξ ∈ RN ,∀u ∈ L1, (6.3)

with inverse transform (under the known restrictions)

ũ(x) :=

∫
RN

e2πiξ·xu(ξ) dξ ∀x ∈ RN . (6.4)

Henceforth we shall use this definition. For N = 1, here x is time, and ξ is number of cycles for

unit time.

Rescaled formulas. Some relevant formulas are then rescaled as follows.

v(x) = u(x− y) =⇒ v̂(ξ) = e−2πiξ·yû(ξ) ∀y ∈ RN , (6.5)

v(x) = e2πix·ηu(x) =⇒ v̂(ξ) = û(ξ − η) ∀η ∈ RN , (6.6)
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u,Dα
xu ∈ L1 ⇒ (2πi)|α|ξαû = D̂α

xu ∈ L∞ ∩ C0, (6.7)

u, xαu ∈ L1 ⇒ Dα
ξ û = (−2πi)|α|x̂αu ∈ L∞ ∩ C0. (6.8)

u∗v ∈ S ′, û∗v = û v̂ (∈ S ′), (6.9)

uv ∈ S ′, ûv = û∗v̂ (∈ S ′). (6.10)

The Parseval and Plancherel formula are unchanged.

For instance,

δ̂y(ξ) = e2πiξ·y ̂e−2πiξ·y = δy(ξ) ∀y ∈ RN . (6.11)

In particular, δ̂0 = 1 and 1̂ = δ̂0. Moreover,

v(x) = e−π|x|
2

=⇒ v̂(ξ) = e−π|ξ|
2
. (6.12)

* Shift and modulation. We redefine the shift and modulation operators Ty,Mη of (3.34) as

follows:

(Tyu)(x) = u(x− y), (Mηu)(x) = e2πiη·xu(x) ∀x, y, η ∈ RN ,∀u : R→ C. (6.13)

This entails the following commutation relation:

TyMη = e−2πiη·yMηTy ∀y, η ∈ RN . (6.14)

Thus TyMη = MηTy iff η · y ∈ Z.

The Fourier transform exchanges the roles of the operators Ty,Mη: (6.7) and (6.8) yield

T̂yu = M−yû ∀y ∈ RN ,∀u ∈ L1, (6.15)

M̂ηu = Tηû ∀η ∈ RN , ∀u ∈ L1. (6.16)

A modulation in time thus corresponds to a shift in frequency. Hence

(TyMηu)̂ = M−yTηû
(

= e−2πiη·yTηM−yû
)

∀y, η ∈ RN . (6.17)

That is,

FTy = M−yF , FMη = TηF , FTyMη = M−yTηF . (6.18)

* Differentiation and multiplication. Theorem 3.6 is here rescaled as follows: for any multi-

index α ∈ NN ,

u,Dα
xu ∈ L1 ⇒ (2πiξ)αû = (Dα

xu)̂ ∈ C0
b , (6.19)

u, xαu ∈ L1 ⇒ Dα
ξ û = [(−2πix)αu]̂∈ C0

b . (6.20)

Here we redefine the multiplication operators (3.34),

(Xu)(x) = 2πixu(x), (Ξu)(ξ) = 2πiξu(ξ), ∀x, ξ ∈ RN , ∀u ∈ L1, (6.21)

so that (6.19) and (6.20) read

u,Dα
xu ∈ L1 ⇒ Ξαû = (Dα

xu)̂ ∈ C0
b , (6.22)

u, xαu ∈ L1 ⇒ Dα
ξ û = [(−X)αu]̂∈ C0

b . (6.23)
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Remark 6.1 * X and −D are proportional to the infinitesimal generators of the modulation and

shift semigroups, respectively:

Dξ(Mξu)
∣∣
ξ=0

= 2πiXu, Dy(Tyu)
∣∣
y=0

= −Du ∀u ∈ L1. (6.24)

These semigroups are therefore mutually dual. 2

The transform of the Gaussian function is here rescaled as follows, for any a > 0:

ua(x) = a−N/2e−π|x/a|
2 ∀x ∈ RN ⇒

ûa(ξ) = aN/2e−π|aξ|
2 ∀ξ ∈ RN .

(6.25)

Thus ua = ûa iff a = 1.

* Proposition 6.2 (Gaussians) For any a > 0, the set {TxMξua : x, ξ ∈ R} is dense in L2. []

7 The Poisson summation formula

(In this section we define the Fourier transform as in (6.3).)

Periodization. For any T > 0, let us set

uT (x) =
∑
k∈ZN

u(x+ kT )

(
=
∑
k∈ZN

u(x− kT )

)
∀x ∈ RN , ∀u ∈ L1. (7.1)

This function is T -periodic in each coordinate direction. We shall call it the T -periodized function

of u.

Remark 7.1 Given a function v : [0, T [N→ C, let us set ṽ = v in [0, T [N and ṽ = 0 in R \ [0, T [N .

Then ṽT is the periodic extension of v, which we may identify with v itself. Notice however that

the respective domains are RN and [0, T [N . 2

Lemma 7.2 For any u ∈ L1 and any function g ∈ L∞ that is T -periodic in each coordinate

direction, ∫
u(x)g(x) dx =

∫
]0,T [N

uT (x)g(x) dx, (7.2)

‖uT ‖L1(0,T )N ≤ ‖u‖L1 with equality if u(·) ∈ R and has constant sign. (7.3)

By setting PTu = uT |]0,T [N , a linear and continuous operator PT : L1 7→ L1(0, T )N is thus

defined.

If u is real and has constant sign, then loosely speaking the restriction of the periodization

compresses the total mass of u to a period. Otherwise, some compensation occurs and the total

mass is reduced.
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Proof. By a simple change of integration variable and as g(·+ kT ) = g, we have∫
u(x)g(x) dx =

∑
k∈ZN

∫
]0,T [N

[u(x+ kT )g(x+ kT )] dx

= (as ug ∈ L1)

∫
]0,T [N

∑
k∈ZN

[u(x+ kT )g(x+ kT )] dx

=

∫
]0,T [N

(∑
k∈ZN

u(x+ kT )

)
g(x) dx =

∫
]0,T [N

uT (x)g(x) dx.

(7.4)

By selecting g = sign(uT ), we have

‖uT ‖L1(0,T )N =

∫
]0,T [N

uT (x)g(x) dx =

∫
u(x)g(x) dx ≤ ‖u‖L1 ,

with equality if u has constant sign. 2

Theorem 7.3 (Poisson’s summation formula) Let T > 0. If u ∈ L1, then

([PTu](x) =)
∑
k∈ZN

u(x+ kT ) =
1

TN

∑
k∈ZN

û(k/T )e2πik·x/T for a.e. x ∈ ]0, T [N . (7.5)

Dually, if û ∈ L1, then

([P1/T û](ξ) =)
∑
k∈ZN

û(ξ + k/T ) = TN
∑
k∈ZN

u(kT )e−2πik·ξT for a.e. ξ ∈ ]0, 1/T [N . (7.6)

Both series converge in L1(0, T )N and L1(0, 1/T )N , respectively. Moreover,∑
k∈ZN

δkT =
1

TN

∑
k∈ZN

δ̂k/T in S ′. (7.7)

In particular, (7.5) and (7.6) hold for any u ∈ S.

By (7.5), the Fourier coefficients of the periodized function are proportional to the values of the

Fourier transform at the integer multiples of 1/T .

Proof. (i) By Lemma 8.1, uT := PTu ∈ L1(0, T )N , so that we can develop this function in Fourier

series:

uT (x) =
∑
k∈ZN

cke
2πik·x/T for a.e. x ∈ ]0, T [N ,

ck =
1

TN

∫
]0,T [N

uT (x)e−2πik·x/T dx

(7.2)
=

1

TN

∫
RN

u(x)e−2πik·x/T dx =
1

TN
û(k/T ) ∀k ∈ ZN .

(7.8)

(Note that û(k/T ) is meaningful since û ∈ C0
b .) This yields (7.5).

(7.6) is similarly proved via the dual argument.

48



For any u ∈ S, selecting x = 0 in (7.5), we have∑
k∈ZN

u(kT ) =
1

TN

∑
k∈ZN

û(k/T ). (7.9)

Hence, recalling the Parseval theorem,

〈
∑
k∈ZN

δkT , u〉 =
∑
k∈ZN

u(kT ) =
1

TN

∑
k∈ZN

û(k/T ) =
1

TN
〈
∑
k∈ZN

δk/T , û〉 =
1

TN
〈
∑
k∈ZN

δ̂k/T , u〉. (7.10)

(7.7) is thus established. 2

Remark 7.4 If u ∈ L1 and lim sup|x|→+∞ |u(x)||x|d < +∞ for some d > N , then
∑

k∈ZN |û(k/T )| <
+∞ Thus the series (7.5) converges everywhere absolutely. A dual statements holds for the dual

series. 2

Dirac calculus. For the sake of simplicity, here we assume T = 1. However, this can easily be

extended to any period T > 0. We define the Dirac comb (or pulse train):

s =
∑
k∈ZN

δk

(
=
∑
k∈ZN

δ−k

)
∈ S ′. (7.11)

Thus (7.9) reads

s(t) = ŝ(t) =
∑
k∈ZN

δ̂k =
∑
k∈ZN

e2πikt in S ′. (7.12)

The periodization can be represented as follows in terms of s: for any u ∈ S,

(u∗s)(x) =
∑
k∈ZN

〈u(x− ·), δ−k〉 =
∑
k∈ZN

u(x+ k) = [P1u](x) for a.e. x ∈ R. (7.13)

We also introduce the sample function (with step 1)

u(x)·s(x) =
∑
k∈Z
〈u, δk〉 =

∑
k∈ZN

〈u(k), δk〉 ∀x ∈ R, ∀u ∈ C0. (7.14)

This definition can easily be extended to any step T > 0.

Thus, denoting the sample operator by Q1,

P1 : S → E ∩ L1 : u 7→ u∗s, Q1 : S → S ′ : u 7→ us. (7.15)

By the next two formulas the Fourier transform establishes a duality relation between periodiza-

tion and sampling. In the engineering literature these formulas are known as exchange relations.

Theorem 7.5 (Exchange)

û∗s = ûs ∀u ∈ S, (7.16)

ûs = û∗s ∀u ∈ S. (7.17)

Proof. The convolution formulas and (7.12) yield

û∗s = ûŝ = ûs, ûs = û∗ŝ = û∗s. 2

Remark 7.6 By this result F transforms the periodized function of u to the sample function of û,

and vice versa transforms the sample function of u to the periodized function of û. In other terms,

F ◦ P1 = Q1 ◦ F : S → S ′, F ◦ Q1 = P1 ◦ F : S → E ∩ L1. (7.18)

The Dirac comb, periodization, sampling and the exchange relations provide a calculus.
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8 The Sampling theorem

(In this section we define the Fourier transform as in (6.3).)

Let us define the space of L2-functions with spectrum of bounded support, i.e., band-limited

signals of finite energy:

BL2(−F0, F0) :=
{
u ∈ L2(R) : û(ξ) = 0, ∀ξ 6∈ [−F0, F0]

}
∀F0 > 0. (8.19)

This a Hilbert subspace of L2(R). By the Paley-Wiener Theorem, any function u ∈ BL2(−F0, F0)

is holomorphic, hence it is supported on the whole R (if u 6≡ 0).

For the sake of simplicity, here we assume N = 1, although this theory can be extended to any

finite dimension.

The famous Sampling Theorem provides a formula for reconstructing a signal u ∈ BL2(−F0, F0)

from its sample values, whenever the sampling frequency is larger than a certain threshold. This

result was due to Whittaker, and is often ascribed to Kotelnikov, Nyquist and Shannon (see e.g.

[Higgins 1984]).

As a first step towards that result, we show how û can be reconstructed by a sequence of sample

values of u, provided that the sampling frequency is not too small. We shall then complete the

proof by antitransforming this formula.

Proposition 8.1 Let F0 > 0. For any u ∈ BL2(−F0, F0) and any T ≤ 1/(2F0),

û(ξ) = T
∑
k∈Z

u(kT )e−2πik·ξT for a.e. ξ ∈ ]0, 1/T [. (8.20)

Proof. Let us set F = 1/(2T ) (≥ F0). As u ∈ L2 and û is supported in [−F0, F0],

P2F û = û|]−F,F [ ∈ L2(−F, F ).

This function can thus be developed in Fourier series: by (7.8),

û(ξ) =
∑
k∈Z

ake
−2πikξT for a.e. ξ ∈ ]0, 1/T [,

ak = T

∫
]0,1/T [

P2F û(ξ)e2πikξT dξ

(7.2)
= T

∫
R
û(ξ)e2πikξT dξ = Tu(kT ) ∀k ∈ Z. 2

(8.21)

For any T > 0, let us define the rectangle function of width T , rec T , and the cardinal sinus

function, sinc :

rec T := χ[−T/2,T/2] in R, (8.22)

sinc t :=
sin(πt)

πt
∀t ∈ R \ {0}, sinc 0 := 1. (8.23)

Thus rec T (t) = H(t− T/2)−H(t+ T/2) (H= Heaviside function).
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Graph of the function sinc (cardinal sinus).

The function sinc is continuous, bounded and even. Moreover,

sinc 0 = 1, sinc n = 0 ∀n ∈ Z \ {0}, (8.24)

[F(rec T )](ξ) =

∫ T/2

−T/2
e−2πiξt dt = T sinc (Tξ) ∀ξ ∈ R. (8.25)

Note that sinc 6∈ L1, since it is the Fourier transform of a discontinuous function. As T → +∞,

rec T → 1 in S ′. Hence

F(rec T ) = T sinc (T ·)→ F(1) = δ0 in S ′, as T → +∞.

Theorem 8.2 (Sampling theorem) Let F0 > 0. For any u ∈ BL2(−F0, F0),

u(t) =
∑
k∈Z

u(kT ) sinc (t/T − k) ∀t ∈ R,∀T ≤ 1/(2F0). (8.26)

This series converges in L2(R) and pointwise everywhere.

The series of (8.26) is called the cardinal series, and is the discrete-time Fourier transform (DTFT)

of the sample sequence {u(kT )}k∈Z.

In passing note that (8.26) clearly holds if t/T ∈ Z, because of (8.24). Moreover, for instance for

T = 1, (8.26)) can be rewritten as u = (u s)∗sinc , by (7.14) and (8.24).

* Proof. Let us fix any F ≥ F0. By Proposition 8.1,

û(ξ) =
∑
k∈Z

ake
−2πikξ/(2F ) ∈ L2(−F, F ), (8.27)

ak =
1

2F
u(k/(2F )) ∀k ∈ Z. (8.28)
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As û = ûrec 2F , denoting the conjugate Fourier transform by F̃ , we then have

u(t) = [F̃(ûrec 2F )](t)
(8.27)

=
∑
k∈Z

ak[F̃(e−2πikξ/(2F )rec 2F (ξ))](t)

=
∑
k∈Z

ak[F̃(rec 2F (ξ))](t− k/(2F ))
(8.25)

=
∑
k∈Z

ak2F sinc (−2Ft+ k)

(8.28)
=

∑
k∈Z

u(k/(2F )) sinc (−2Ft+ k) ∀t ∈ R.

(8.29)

As sinc (−2Ft+ k) = sinc (2Ft− k), setting T = 1/(2F ) we get (8.26).

As u ∈ L2 and is holomorphic, the series (8.26) converges in L2(R) and pointwise everywhere. 2

Corollary 8.3 For any u ∈ BL2(−F0, F0) and any T ≤ 1/(2F0),∫
R
u(t) dt = T

∑
k∈Z

u(kT ), (8.30)

∫
R
|u(t)|2 dt =

∫
R
|û(ξ)|2 dξ = T

∑
k∈Z
|u(kT )|2. (8.31)

Proof. By (8.25),∫
R

sinc (t/T − k) dt = T

∫
R

sinc r dr = T [F̃(sinc )](0) = T rec 1(0) = T. (8.32)

(8.30) then follows by integrating (8.26).

As we saw in the proof of the Sampling Theorem, û can be developed in Fourier series, and its

coefficients are as in (8.28). By the Plancherel Theorem we then get∫
R
|u(t)|2 dt =

∫
R
|û(ξ)|2 dξ =

1

T

∑
k∈Z
|ak|2 = T

∑
k∈Z
|u(kT )|2. 2

Corollary 8.4 For any T > 0, {sinc (t/T −k)}k∈Z is an orthogonal family of functions of L2, with∫
R
| sinc (t/T − k)|2 dt = T ∀k ∈ Z. (8.33)

This family generates the space BL2(−F0, F0) for any F0 ≥ 1/(2T ).

Proof. For any t ∈ R and any k ∈ Z, let us set vk(t) = sinc (t/T − k), and note that v̂k =

(1/T ) rec T (ξ)e−2πikξ/T . Therefore∫
R
vh(t)vk(t) dt =

∫
R
v̂h(ξ)v̂k(ξ) dξ =

∫ T/2

−T/2
e2πihξ/T e−2πikξ/T dξ

=

{
T if h = k

0 if h 6= k.

(8.34)

The final statement of the thesis stems from the Sampling Theorem. 2
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Remarks 8.5 (i) For a sampling frequency 1/T < 1/(2F0) (so-called undersampling), the formula

(8.26) does not reconstruct accurately the signal u. In Signal Processing this distortion is known

as aliasing. A typical example occurs in movies. If the frequency of rotation of the wheels of a

car is larger than the sampling rate of the camera, in the movie the rotating wheels may appear as

steady or even turning backward.

On the other hand, a sampling frequency 1/T > 1/(2F0) (so-called oversampling) does not

improve the reconstruction (8.26), which is already perfect.

(ii) The results of this section can be extended to any number of dimensions. 2

9 The Uncertainty Principle

(In this section we define the Fourier transform as in (6.3).)

Fourier analysis describes quantities as functions either of x ∈ RN or of the dual variable ξ ∈ RN ,

establishing a net distinction between space- and spectral-representations. For N = 1, in Signal

Analysis these variables typically represent time and frequency. Whenever the inversion theorem

applies, u(x) and û(ξ) are equivalent representations of the same entity. Nevertheless, without

operating the transform, it is may be hard to derive qualitative properties of u(x) from those of

û(ξ), and conversely.

Time-Frequency Analysis instead combines information on u(x) with that on û(ξ). The Heisen-

berg uncertainty principle is a fundamental result of this theory. Its several variants put severe

limitations: it is impossible to provide a precise representation of any phenomenon both in time

and frequency. Instantaneous frequency and time concentration cannot be derived from a real

signal.

Doppler theorem. We start by an example. (3.26) yields the following scaling formula, which is

also called the Doppler theorem:

va(x) = a−N/2u(x/a) ⇒ v̂a(ξ) = aN/2û(aξ) ∀a > 0,∀u ∈ L1. (9.1)

By this scaling and because F is an isometry in L2, we get

‖va‖L2 = ‖u‖L2 = ‖û‖L2 = ‖v̂a‖L2 ∀a > 0.

In particular, by taking the Gaussians functions (6.12) as u by (2π)−N/2, we have

va(x) = a−N/2e−|x/a|
2 ⇒ v̂a(ξ) = aN/2e−|aξ|

2 ∀a > 0. (9.2)

As
∫
e−|y|

2
dy = πN/2, we infer that ‖va‖L2 = ‖v̂a‖L2 = πN/2 for any a > 0.

In either case, by varying a the more the graph of va is spread the more that of v̂a is concentrated,

and conversely. (This stems from the occurrence of the product ξ ·x in the definition of the Fourier

transform.) Next we state a more general result. Although here we take N = 1, this is easily

extended to any N .

Theorem 9.1 (Heisenberg’s uncertainty principle) Let u ∈ L2(R), and set E := ‖u‖2L2(= ‖û‖2L2).

Let us assume that the densities of probability |u|2/E and |û|2/E respectively have finite mean

m1,m2 and finite variance σ2
1, σ

2
2:

m1 =
1

E

∫
x|u|2(x) dx, σ2

1 =
1

E

∫
(x−m1)2|u|2(x) dx, (9.3)

m2 =
1

E

∫
ξ|û|2(ξ) dξ, σ2

2 =
1

E

∫
(ξ −m2)2|û|2(ξ) dξ. (9.4)
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Then

σ1σ2 ≥ (4π)−1. (9.5)

For any a > 0, equality holds if u(x) = va(x) = a−N/2e−|x/a|
2
.

Proof. Without loss of generality, we can assume that m1 = m2 = 0; thus

√
Eσ1 = ‖xu‖L2 ,

√
Eσ2 = ‖ξû‖L2 . (9.6)

Let us first assume that u ∈ D. By the differentiation formulas and by L2-isometry,

4π2

∫
ξ2|û(ξ)|2 dξ =

∫
|û′ (ξ)|2 dξ =

∫
|u′(t)|2 dt < +∞. (9.7)

Notice that

2 Re

∫
xu(x)u′(x) dx =

∫
x
{
u(x)u′(x) + u(x)u′(x)

}
dx =

∫
x
d

dx
|u(x)|2 dx

= lim
A→+∞

x|u(x)|2
∣∣∣x=A

x=−A
− ‖u‖2L2 = −‖u‖2L2 = −E,

and ∣∣∣Re

∫
xu(x)u′(x) dx

∣∣∣ ≤ ‖xu‖L2‖u′‖L2
(9.7)
= 2π‖xu(t)‖L2‖ξû(ξ)‖L2

(9.6)
= 2πEσ1σ2.

These two formulas entail that 4πσ1σ2 ≥ 1 for all u ∈ D. As D is dense in L2, (9.5) follows. The

final statement about Gaussian functions can be checked by direct computation. 2

Remark 9.2 The standard deviations σ1 and σ2 can be regarded as crude measures respectively

of the duration and of the bandwidth of the signal u = u(x). This somehow generalizes the concept

of support of a signal in time- and frequency, respectively. 36 2

Heisenberg boxes. The Uncertainty Principle may loosely be interpreted as follows in the time-

frequency (t, ξ)-plane. It essentially prevents u and û from being both small outside small sets of

the respective time and frequency domains. In other terms, the mass of both u and û cannot be

concentrated in sets of small N -dimensional volume.

Let us represent the time-frequency resolution of a signal u ∈ L2 by a rectangular box centered

at the point (x, ξ) = (m1,m2), having width σ1 (σ2, resp.) along the x-axis (the ξ-axis, resp.).

This is called a Heisenberg box. By the Heisenberg inequality σ1σ2 ≥ (4π)−1. Thus the sharper is

the information we have on time localization of a phenomenon (i.e., the smaller is σ1), the rougher

is the information we may get on its frequency (i.e., the larger is σ2), and conversely. In this sense,

time resolution and frequency resolution mutually compete.

The family of Gaussian functions ua(x) = a−N/2e−a|x|
2
, parameterized by a > 0, is an L2-

example. By inspecting (9.2), we already pointed out that the spreading of the graph of ua is

inversely proportional to that of ûa.

Passing to the limit in S ′ as a→ 0, a−N/2e−a|x|
2 →
√
πδ0 in S ′, which exactly specifies the time

location of the signal. Its Fourier transform is the constant
√
π, which is supported over the whole R,

36 Consistently with the applicative literature, here by support of a function f we mean to the region in which
most of the mass of the function is concentrated. This rather loose concept is different from that used in analysis,
and can be formulated in several ways; for instance, the support if f may be defined as the region where |f | is larger
than some prescribed (small) constant. Of course this is not related to the definition of support that we used so far.
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and thus is completely unlocalized in frequency. Similarly, for any x0 ∈ R, a−N/2e−a|x−x0|
2 →
√
πδx0

in S ′ as a → 0. Its Fourier transform is the sinusoid û(ξ) =
√
πe−2πiξx0 , which is completely

unlocalized in frequency.

Dually, for any x0, the Dirac measure û = δξ0 is an exact frequency specification. Its Fourier

antitransform is the sinusoid u(t) = e2πiξ0t, which is completely unlocalized in time. 37

Note that this discussion of Gaussians applies to any a > 0, but not to this limit case a = 0,

since the Dirac measures and the sinusoids are not elements of L2.

37 This theory also has musical applications; for instance, the sinusoid may represent a pure musical tone.
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