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Music is the sound of mathematics 1

Abstract. These notes introduce some basic elements of music theory using the mathematical
language, in particular algebraic relations, constructions related to Fourier theory, mathematical-
physical issues related to musical instruments. Attention is devoted to the theory of tuning, in
particular to Pythagorean tuning, Ptolemaic tuning, and equal temperament.
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1 Basic Elements

Music affects our feelings and our mood. It has a strong impact on the cultural, social and
economical life of our society: music moves the world. 2

Music is a highly interdisciplinary topic: it involves acoustics, audiology, auditorial physiology,
psychoacoustics (thus acoustics and psychology), cognitive science, mechanics, electronics, infor-
matics, engineering, and so on. Mathematics provides language, structure and calculus to science
and engineering, and pervades many of the above disciplines. In particular mathematics is at the
basis of the theory of sound and of the construction of musical scales.

1 Leibniz wrote: “Musica est exercitium arithmeticae occultum nescientis se numerare animi.” (Music is a hidden
arithmetic exercise of the soul, which does not know that it is counting.)

2 In the Middle Age, music was regarded as one of the seven liberal arts. Arithmetic, geometry, music and
astronomy formed the quadrivium. Jointly with grammar, logic and rethoric (the trivium), this constituted the
basis of the education, and allowed access to the higher university studies of philosophy and theology.
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In these notes we shall outline some elements of music theory, emphasizing mathematical aspec-
ts. We shall see that this also involves arithmetic, Fourier analysis, algebraic structures and
mathematica physics.

1.1 The musical signal

The musical signal is characterized by:
— Frequency. Usually, one singles out the frequency of the fundamental component of a sound.

This is the greatest common divisor of the frequencies of its partial tones. 3

— Duration. This is often expressed in terms of relative duration; for instance, the musical score
indicates the ratio between the duration of a tone and that of the other tones.

— Intensity. The acoustic power carried by the acoustic wave. For each pure tones, this is
proportional to the square of the wave amplitude.

— Timbre (also called the color of the sound). This reflects how the acoustic power is distributed
among pure tones. It depends on the source of the sound.

These acoustic elements are combined with musical features such as melody, harmony, tonality,
rhythm, meter, texture and form.

Music occurs in so many styles that it is not easy to establish general criteria to distinguish
it from other acoustic experiences. (Would devotees of classical music regard hard metal rock as
music, or vice versa?) Anyway, we can assume that the musical sound consists of overlapping
atomic acoustic events, that are periodic (or at least close to being so) on a small time-scale, at
variance with noise.

These basic musical elements are tones (or notes). To be precise, the former term denotes a sound
characterized by precise frequency and duration, the second one rather denotes the corresponding
symbol on the staff (i.e., the musical sheet). However, the difference between these two meanings
may be subtle, and we shall come back to this issue ahead. From a less linguistic and more musical
point of view, let us define pure tone a sinusoidal wave, that is, the real or imaginary part of a
function like Aeirt with A > 0 and r ∈ R. 4 The sound that is produced either by the human
voice or by a musical instrument is a superposition of pure tones. However a real sound may also
include components that are inharmonic, see ahead.

Fourier series. As we know, any sufficiently regular periodic function u = u(t) of period T can
be represented as a Fourier series of harmonics: 5

u(t) =

+∞∑
k=−∞

cke
ik2πt/T =

a0
2

+

∞∑
k=1

[
ak cos(k2πt/T ) + bk sin(k2πt/T )

]
,

ck ∈ C, ak =
ck + c−k

2
, bk = i

ck − c−k
2

∀k ∈ N.

(1.1)

We assume that u(t) is real, so that ak and bk are also real for any k. The first harmonic is
called the fundamental tone; let us denote its frequency by f1. The other components are called
overtones, and have frequencies n/T = nf1, for all integer n. (So the first overtone is the second
harmonic, and so on.) The frequency is usually measured in Hertz: 1 Hz = 1 cycle/second.

Acoustics and psychoacoustics. 6 Music is produced either by the human voice or by a musical
instrument. In either case a vibrator produces a variation of pressure u = u(t), and a resonator

3 Ahead we shall mention the surprising phenomenon known as missing fundamental.
4 In passing, note that in mathematical analysis any function u : RN → C is called harmonic if ∆u =∑N
k=1D

2
xi
u = 0. As Aeirt is an eigenfunction of D2 for N = 1, why is it called harmonic? The point is that

the function f : C → C : z 7→ Aeirz is holomorphic, hence harmonic: ∆f(x + iy) = 0. (Harmonic analysis, is a
branch of mathematical analysis and includes the Fourier theory.)

5 Regularity is a basic concern of mathematicians. Here we shall always assume that the necessary regularity
conditions are fulfilled.

6 Psychoacoustics should not be confused with the cognitive science of music.

2



amplifies the components of certain frequencies. If this signal is periodic, then it can be represented
as a Fourier series, namely as a series of harmonics, see (1.1). 7 The k-th harmonic has frequency
fk = kf1 and amplitude

Ak =
√
a2k + b2k =

√
|ck|2 + |c−k|2/

√
2.

The acoustic power associated to the frequency fk is proportional to A2
k (let us denote by σ the

proportionality factor). In other terms, denoting by Ek(ε) the energy conveyed in a time interval
of length ε, limε→0Ek(ε)/ε = σA2

k. Therefore, as the period T of acoustic waves is very small, the
total acoustic power of the signal u(t) can be approximated by

1

T

∫ T/2

−T/2
|u(t)|2 dt ' σ

∞∑
k=0

A2
k = σ

∞∑
k=0

(a2k + b2k) =
σ

2

∞∑
k=0

(|ck|2 + |c−k|2). (1.2)

If the sound includes inharmonic (that is, non T -periodic) components, of course they also
contribute to the total acoustic power.

One defines acoustic intensity (or sound intensity) the ratio between the acoustic power and the
area on which this power is distributed. The related acoustic intensity level is usually expressed
using the decibel (dB) as unit of measure. The number of decibels of a sound, IdB , is 10 times the
logarithm in basis 10 of the ratio between its actual intensity, I, and a reference intensity, I0:

IdB = 10 log10(I/I0), i.e., I = I0 10IdB/10. (1.3)

Usually I0 is conventionally fixed at 10−12W/m2.
Note that the representation in decibels is not used just for sounds: it refers to the logarithm

rescaling, and is used to transform other quantities, too.

Loudness. The acoustic intensity and the acoustic intensity level are physical quantities. The
related notion of loudness is a perceptual entity and concerns psychoacoustics. So the acoustic
intensity level is objective, loudness is its subjective counterpart. The latter can be evaluated by
getting responses from human observers, rather than by physical measurements.

Often loudness is related to the acoustic intensity I on the basis of the Fechner law

Fechner law: a sensation is proportional to the logarithm of the stimulus. (1.4)

Here it is assumed that the stimulus is a physical physical, that is, it can be expressed in a precise
quantitive way and can be measured. On the other hand, it is not clear how a sensation might
be measured in such an objective way. A sensation is rather a psychophysical entity, which can
detected via psychophysical methoda (essentially interviews). Thus (1.4) is a psychophysical law.
(This requires fixing the proportionality factor, but this depends on the units of measure. Here
the emphasis is on the logarithmic dependence.)

This suggests to define the loudness via a formula similar to (1.3):

ĨdB = 10 log10(I/Ĩ0) whence ĨdB = 0 if I = Ĩ0. (1.5)

(We still denote the index dB because of the logarithmic scaling.) Above we conventionally fixed
I0 at 10−12W/m2, and this yielded the definition of the acoustic intensity level IdB . Here instead

we define Ĩ0 as the threshold of minimal perceptibility; this can be determined through interviews,
so that (1.5) becomes a psychophysical definition of loudness.

The difference between the (1.3) and (1.5) is especially clear if one considers dependence on
frequency. In order to simplify our discussion let us assume that the sound source is a pure tone

7 A harmonic is a sinusoidal function (namely, an exponential with imaginary exponent, thus a cosine or a sine
is we consider the real or imaginary part), with frequency proportional to an integer multiple of the fundamental
frequency. So is Aeik2πt/T for any A > 0 and any k ∈ N.
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of frequency f . We assumed I0 = 10−12W/m2 independently of f , hence the acoustic intensity
level does not depend on f . Our perception instead is highly frequency dependent, see Figure 1.
At about 2 kHz our perception is optimal, and the thresholds Ĩ0 is not far from the conventional
value I0 = 10−12W/m2. But the more the sound departs from that frequency, the weaker is our
perception. In particular, the lower is the intensity of a sound, the less we perceive its components
of low frequency. Outside the range of about 20–20.000 Hz we do not perceive any sound.

In this context the pain (and auditory damage) threshold is set at about 120–130 decibel (=
1 W/m2). Thus the span between minimal perceptibility and pain is about 12 orders of magnitude.
8

Figura 1: Hearing-range, represented in the plane of frequency and acoustic intensity level.

Beats. Beats are an acoustic phenomenon that is due to the superposition of two waves of different
frequencies and the same amplitude, for instance

u(t) = A[sin(ν1t+ ϕ1) + sin(ν2t+ ϕ2)], (1.6)

for some ν1, ν2 ∈ Z(ν1 6= ν2) and ϕ1, ϕ2 ∈ R. Let us recall the classical prosthaphaeresis formula

sinx+ sin y = 2 sin
x+ y

2
cos

x− y
2

∀x, y ∈ R, (1.7)

and take x = ν1t+ ϕ1 and y = ν2t+ ϕ2. By setting

ν =
ν1 + ν2

2
, δν =

ν1 − ν2
2

, ϕ =
ϕ1 + ϕ2

2
, δϕ =

ϕ1 − ϕ2

2
,

we get
u(t) = A sin(νt+ ϕ) cos(δν t+ δϕ). (1.8)

The additive superposition of two waves of the same amplitude and of frequencies ν ± δν thus
produces the multiplicative superposition of two waves of frequencies ν and δν. If δν << ν (i.e.,
ν1 ' ν2), we thus get oscillations of frequency ν modulated by oscillations of frequency δν, with
modulation period 1/δν >> 1/ν. 9 Graphically this looks like a periodic wave whose amplitude
has low frequency oscillations, see Figure 2.

8 The acoustic intensity level of certain rock concerts may attain 130–140 dB, for the enjoyment of the public.
9 In telecommunications this is used to transmit information. The wave of large frequency (ν) is called the

carrier, and the wave of small frequency (δν) is called the envelope. The envelope represents how the carrier is
modulated,that is, how the amplitude is modified. This modulation contains the information that is transmitted.
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Figura 2: The blue curve represents the carrier wave. The red curve is the envelope and represents the
beats.

As (1.6) is equivalent to (1.8), we can also derive the former from the latter. So the multiplicative
superposition of two waves of respective frequency ν1 and ν2 is equivalent to the sum of two waves
which have frequencies µ1 = ν1+ν2

2 and µ2 = ν1−ν2
2 :

u(t) = A sin(ν1t+ ϕ) cos(ν2t+ δϕ) = A[sin(µ1t+ ϕ1) + sin(µ2t+ ϕ2)]. (1.9)

Consonance and dissonance. This distinction mainly concerns simultaneous sounds, and indeed
these notions arose especially in polyphonic Western music.

Consonance (or concord) and its opposite, namely dissonance, are subjective qualities of sound
combinations. This is a rather complex notion, which involves acoustic, perception and cognitive
science. We then distinguish acoustic consonance from musical consonance, although the boundary
between these concepts is not sharp.

Beats are at the basis of acoustic dissonance. If two notes with sufficiently close frequencies ν1
and ν2 are played simultaneously, the onset of beating is rather disturbing if ν1 − ν2 falls in a
critical range. But if ν1 and ν2 are either sufficiently close or sufficiently apart, then no beats are
perceived, see Figure 3. This effect is used to tune musical instruments, since beats allow us to
detect small variations in frequency that otherwise could not be perceived by our ear.

4.3. HISTORY OF CONSONANCE AND DISSONANCE 141

Rameau ([113], chapter 3) regarded this as already being enough explana-
tion for the consonance of these intervals, but Sorge6 (1703–1778) was the
first to consider roughness caused by close partials as the explanation of dis-
sonance. It was not until the nineteenth century that Helmholtz (1821–1894)
[55] sought to explain consonance and dissonance on a more scientific ba-
sis. Helmholtz based his studies on the structure of the human ear. His idea
was that for small differences between the frequencies of partials, beats can
be heard, whereas for larger frequency differences, this turns into roughness.
He claimed that for maximum roughness, the difference between the two fre-
quencies should be 30–40 Hz, independently of the individual frequencies.
For larger frequency differences, the sense of roughness disappears and con-
sonance resumes. He then goes on to deduce that the octave is consonant be-
cause all the partials of the higher note are among the partials of the lower
note, and no roughness occurs.

Plomp and Levelt, in the nineteen sixties, seem to have been the first
to carry out a thorough experimental analysis of consonance and dissonance
for a variety of subjects, with pure sine waves, and at a variety of pitches.
The results of their experiments showed that on a subjective scale of conso-
nance ranging from zero (dissonant) to one (consonant), the variation with
frequency ratio has the shape shown in the graph below. The x axis of this
graph is labelled in multiples of the critical bandwidth, defined below. This
means that the actual scale in Hertz on the horizontal axis of the graph varies
according to the pitch of the notes, but the shape of the graph remains con-
stant; the scaling factor was shown by Plomp and Levelt to be proportional
to critical bandwidth.
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The salient features of the above graph are that the maximum disso-
nance occurs at roughly one quarter of a critical bandwidth, and consonance
levels off at roughly one critical bandwidth.

It should be stressed that this curve is for pure sine waves, with no har-
monics; also that consonance and dissonance is different from recognition of
intervals. Anyone with any musical training can recognise an interval of an

6G. A. Sorge, Vorgemach der musicalischen Composition, Verlag des Autoris, Loben-
stein, 1745–1747

Figura 3: Acoustic consonance vs. frequency difference.

Acoustic dissonance may be regarded as objective. On the other hand, musical dissonance
is subjective, conventional, and has a cultural basis. In also depends on the style and on the
period. For instance, in the Renaissance just unison, octaves, perfect fifths and perfect fourths
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were regarded as musically consonant. 10 In the Common Practice Period major and minor thirds,
major and minor sixths were also included in consonant interval. 11 The other intervals were
considered dissonant to greater or lesser degree; for instance, an interval of a semitone is still
regarded as highly dissonant.

Superficially, consonance might be regarded as pleasant and dissonance as disturbing. But pro-
longed consonance may be boring, and small amounts of dissonance can give flavor to musical
compositions. A more advanced point of interpretation of this concept is that a consonant interval
or chord actually seems stable and complete in itself, whereas a dissonance is perceived as incom-
plete, and wants to resolve to a consonance. We might loosely refer to consonance as rest, and
dissonance as movement.

1.2 Some mathe-musical concepts 12

Besides periodicity and the consequent decomposition in Fourier series, at the basis of music
theory there is so-called octave reduction. This rests upon the logarithmic nature of our response
to sound sensation.

Logarithmic frequency. Another example of the Fechner law of psychoacoustics states that
(1.4) 13

the acoustic response of our auditory system depends linearly on

the logarithm of the frequency of the impacting sound wave.
(1.10)

For instance, let us either sing or play four pure sounds S1, ..., S4 respectively of frequency f1, ..., f4.
If

f2/f1 = f4/f3 i.e., log f2 − log f1 = log f4 − log f3,

we tend to perceive the interval (S1, S2) as musically similar to (S3, S4). So we express the difference
between S1 and S2 by the frequency ratio f2/f1. On the logarithmic scale the interval S1S2 thus
has length log f2− log f1 = log(f2/f1). As we are more used to operate with differences rather than
ratios, we shall represent frequencies on a logarithmic scale. More precisely, we shall call pitch the
logarithm of the frequency of a pure tone. 14

The choice of the basis of the logarithm is immaterial, because a change of basis corresponds to
an irrelevant factor. Indeed

loga b · logb c = loga c ∀a, b, c > 0,

since aloga b·logb c = [aloga b]logb c = blogb c = c = aloga c.

Octave reduction. Two pure tones sound at best together if the ratio of their frequencies is an
integer power of 2. In music one calls octave (which is Latin for eighth) any frequency interval

10 in 1324, Pope John XXII established by an edict that church music was allowed to use just these intervals.
11 Here is a very rudimentary periodization of Western music, up to the end of the 19th century:
Early period, characterized by modality: Medieval era: 800–1400, Renaissance era: 1400–1600.
Common practice period, characterized by tonality: Baroque era: 1600–1750, Classical era: 1750–1820, Romantic

era: 1820–1910. (Of course, this exercise is extremely schematic and disputable.)
12 Music theory is permeated by (mostly simple) mathematical concepts: arithmetic, logarithms, equivalence

relations, and so on. The last years have seen the birth and advancement of a mathematics of music (mathe-music)
as a discipline characterized by peculiar problems and methods. However, music has not (yet) been given any
axiomatic mathematical foundation.

13 This can be explained by a model of our inner ear, in particular by the structure of the ear’s basilar membrane,
which acts as a sort of spectral analyzer. This fact is at the basis of our capability of recognizing a large range of
sounds; e.g., at best we can hear frequencies between 20 and 20.000 Hz (about): a span of three orders of magnitude.
(For an aged person the upper bound may be much smaller.)

14 According to the Oxford Dictionary, pitch is the degree of highness or lowness of a tone. Although pitch
depends on frequency, it is related to our acoustic perception, rather than to physical measurements. Pitch may be
regarded as a sort of psychoacoustic counterpart of frequency. Here however by the term pitch we shall mean the
logarithm of the frequency.
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of length L = log 2. Any frequency span can thus be decomposed into a (possibly non integer)
number of octaves. 15

For many purposes, in music

one identifies two pure tones if the ratio of their frequencies is a power of 2. (1.11)

It is thus natural to select the basis 2 for the logarithm of the frequency. This identification is
called octave reduction. The properties of equivalence relations are fulfilled, and one speaks of
octave equivalence. 16 We shall call pitch classes these equivalence classes modulus 1.

The mathematical operation of octave reduction has a musical meaning: if one transposes (i.e.,
shifts the notes) of a musical piece, the music is perceived as similar. This is especially evident if
the transposition is by an octave, i.e., if all frequencies are doubled. Something analogous occurs
when a piece of music is played e.g. by a violin and a cello, or when a man and a woman sing the
same song, or pronounce the same words, at an octave apart. (Voices however also differ in timbre,
as we shall see.)

Moreover, although several musical elements depend just on pitch classes, other depend also
on the octave. Logarithmic rescaling has a perceptual origin, whereas octave reduction seems to
have a cultural basis. So, although octave reduction is shared by almost all cultures, it seems less
mandatory than logarithmic rescaling. 17

Note that several elements support the use of logarithms: because of the Fechner law (1.4) they
have a perceptual basis, they allow to represent intervals by intervals instead of ratios, on the
logarithmic scale octaves are equi-spaced.

Tones and keys. We intend to establish a correspondence between tones, frequencies and keys
of the keyboard.

Figura 4: A keyboard.

First we define musical notes: in principle these are pure tones. 18 Typically the sound that is
produced by musical instruments is a superposition of pure tones. If the sound is periodic, the pitch
of the of the sound is typically associated to the fundamental frequency. Many instruments (e.g.,
keyboards, strings, woods, brasses) produce periodic sounds in which a component (typically, the
fundamental) prevails over the other tones. For other instruments (typically percussion instruments
like drums, bars, bells) inharmonic components prevail over the harmonics, and the sounds that
they produce may look of indeterminate pitch.

15 As we pointed out, human hearing sensibility ranges at best between 20 and 20.000 Hz (about). As 210 =
1024 ' 1000, this makes a maximum span of about 10 octaves. Human singing from bass to soprano has a total
extension between 100 and 1000 Hz (about), so about four octaves.

The frequency range of a piano is between 27.5 Hz (A0) and 4186 Hz (C8), which is a span of more than seven
octaves. The piano is one of the musical instruments with the largest extension; that of the organ is 9 octaves.
(Organs include several keyboards: typically up to three or four manuals and a pedal, respectively operated by
hands and feet. Anyway in New Jersey there is an organ with ten keyboards, for octopus players...)

16 This is just one of the numerous algebraic structures that underly musical theory. Other examples of equivalence
relation and corresponding identifications concern scale transposition, flats and sharps (so-called enharmonicity),
modes, chord inversion, and so on. (Ahead we shall see some of these relations.)

17 Anyway different cultures divide the octave differently. For instance, Indians divide it into 22 parts, Arabs into
17 parts, Chinese into 5 parts. We shall see that in the West we divide the octave into 12 semitones.

18 The term note may also have other meanings in music: it may refer to a symbol on a musical score, to the
tone as played by a musical instrument, to a key of a keyboard, and so on.
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By looking at a keyboards, one immediately notices a repeated pattern of five black keys and
seven white keys; this set is called an octave, see Figure 5. In a piano there are seven octave plus
four extra keys, so 88 keys all together. 19

I I I 

I , I I 
I I I I 

fourth--  ' t 
I I ! 
! I I 

, ~ l  I I<  f i f t h  . -  
i ! 

, o c t a v e  . . . .  > '  
Figure 3. The c lass ica l ly  " c o n s o n a n t "  intervals.  

weights, to the numerical fraction 2/1, 3/2, and 4/3, respec- 
tively. Thus, Pythagoras thought that the relative weights 
of two hammers producing an octave is 2/1, and so on. As 
soon as this idea occurred to him, Pythagoras went home 
and performed several experiments using different kinds 
of instruments, which confirmed the relationship between 
musical intervals and numerical fractions. Some of these 
experiments consisted of listening to the pitch produced 
by the vibrations of strings that have the same length; he 
had suspended the strings from one end and attached dif- 
ferent weights to the other end. Other experiments involved 
strings of different lengths, which he had stretched end-to- 
end, as in musical instruments. He also did experiments on 
pipes and other wind instruments, and all these experi- 
ments confn-med him in his idea that musical intervals cor- 
respond in an immutable way to definite ratios of integers, 
whether these are ratios of lengths of pipes, lengths of 
strings, weights, etc. 6 

Theon of Smyrna, in Part 2, Chapter XIII of his mathe- 
matics treatise [12], describes other experiments which il- 
lustrate this relation between musical intervals and quo- 
tients of integers. He relates, for instance, that the 
Pythagoreans considered a collection of vases, filled par- 
tially with different quantities of the same liquid, and ob- 
served on them the "rapidity and the slowness of the move- 
ments of air vibrations." By hitting these vases in pairs and 

listening to the harmonies produced, they were able to as- 
sociate numbers to consonances. The result is again that 
the octaves, fifths, and fourths correspond respectively to 
the fractions 2/1, 3/2 and 4/3, in terms of the quotients of 
levels of the liquid. 

These experiments were repeated and reinterpreted by 
the acousticians of the seventeenth century. The ideas and 
observations of Pythagoras and his school established the 
relation between musical intervals and ratios of integers. 

L o g a r i t h m s  
The arithmetic of musical intervals involves in a very nat- 
ural way the theory of logarithms. For an example, we re- 
turn for a moment to Jamblichus, who relates in Section 
XV of [7] that Pythagoras defined the tone as the dif ference 
between the intervals of fifth and of fourth. (The definition 
may seem circuitous, but it becomes natural if we recall 
that the defmitious of musical intervals had to be based on 
those of consonant intervals, which are naturally recog- 
nisable by the ear.) The point now is that the fraction as- 
sociated to the tone interval is not the difference 3/2 - 4/3, 
but the quot ient  (3/2)/(4/3) = 9/8. 

It is natural to define the compass of a musical interval 
as the number (or the fractions of) octaves it contains. 
Thus, when we say that two notes are n octaves apart, the 
fraction associated to the interval that they define is 2 n. The 
definition of the compass can be made in terms of fre- 
quency, and in fact one usually defines the p i t ch  as the log- 
arithm in base 2 of the frequency. (Of course, the notion of 
frequency did not exist as such in antiquity, but it is clear 
that the ancient Greek musicologists were aware that the 
lowness or the highness of pitch depends on the slowness 
or rapidity of the air vibration that produces it, as explained 
in Theon's treatise [12], Chapter XIII.) The relation of mu- 
sical intervals with logarithms can also be seen by consid- 
ering the lengths of strings (which in fact are inversely pro- 
portional to the frequency). For instance, if a violinist (or 
a lyre player in antiquity) wants to produce a note which 
is an octave higher than the note produced by a certain 
string, he must divide the length of the string by two. 

Thus, music theorists dealt intuitively with logarithms 
long before these were defined as an abstract mathemati- 
cal notion. (It was only in the seventeenth century that log- 
arithms were formally introduced in music theory, by Isaac 
Newton, and then by Leonhard Euier and Jacques Lam- 
bert.) The theory of musical intervals is a natural example 
of the practical use of logarithms, an example easily ex- 
plained to children, provided they have some acquaintance 
with musical intervals. 

6We must note that the experiment with the hanging weights is considered to be a mistake of Pythagoras, or an extrapolation due to Pythagoras's disciples, or a mis- 

interpretation of what Pythagoras really said. This mistake was noticed by Vincenzo Galilei (the father of Galileo GalileO. Vincenzo was a most cultivated person, in par- 
ticular a music theorist and a music composer. He did the experiment with the hanging weights and realized that to produce the intervals of octave, fifth, and fourth, 

the ratios of the pairs of weights should be respectively 4/1, 9/4, and 16/9, which are the squares of the numbers which occur in the experiments involving the lengths 

of strings. Galilei was proud of that discovery (and of the discovery of a mistake in the theory of Pythagoras), and he published it in his famous musical treatise, the 

Discorso intomo alle opere de Gioseffo Zarlino. The physical reason behind this fact is that the frequency of a vibrating string, while it is proportional to the length of 

the string, is proportional to the square root of the tension. Nonetheless, the relation between musical intervals and ratios of integers is still there, even though it is not 

so direct in all cases. We note too that the same experience with the hanging weights is described by Vincenzo's son, Galileo (see [5], p. 98 to 110). 

~8 THE MATHEMATICAL INTELLIGENCER 

Figura 5: An octave on a keyboard.

The peculiar configuration of the octave needs and explanation. We shall provide a harmonic
foundation for this black and white pattern by relating it to the Fourier decomposition of periodic
sounds. Ahead, we shall also derive the exact values of the frequencies of the notes; this is the
problem of tuning. This will need mathematical arguments, as well as musical criteria of selection
based on consonance. As we shall see, several solutions have been proposed for this problem in the
centuries, and the final answer is still somehow controversial. However, for the moment we intend
to be more descriptive than deductive, and simply assume a correspondence between pure tones
and keys, postponing any justification.

By octave reduction, we confine our attention to a single octave. Starting from the left side
of the keyboard, we label the seven white keys as C,D,E, F,G,A,B, and the five black keys as
C], D], F ], G], A], so that ordering by increasing frequency we have

C,C], D,D], E, F, F ], G,G], A,A], B. (1.12)

(We shall see that we might also use flats instead of sharps.)

The chromatic clock. The 7 note on the white keys form a diatonic scale, the 5 note on the
black keys form a pentatonic scale, and the 12 notes altogether form a chromatic scale. 20 The
latter scale can be visualized on the chromatic clock (or Krenek diagram), see Figure 6. Other
eleven chromatic scales are obtained by permuting cyclically the scale (2.18).

Fixing the exact frequencies of the notes is the purpose of the theory of tuning (or intonation),
that we shall outline ahead. In order to simplify our task, here we assume that (as it is somehow
suggested by the image of the clock) on the logarithmic scale

the pitch difference of adjacent notes is approximately uniform. (1.13)

This difference is thus approximately 1/12; we call the corresponding frequency ratio 21/12 '
1.059463... a semitone. We then call whole tone (or just tone) the double of the semitone (on the
logarithmic scale), which corresponds to the frequency ratio 21/12 × 21/12 = 21/6. We shall refer
to (1.13) as the assumption of approximate uniformity of the semitone. As we shall see, this is
exactly true just according to the theory of so-called equal temperament. However, a large part of
music theory can be developed under the weaker assumption (1.13).

19 The term key may also have other meanings in music: it may refer to the first note of a scale, to the key of a
piece of music (which refers to the key of the scale in use), there are the violin and bass keys of the musical score,
and so on. These terms will be defined ahead.

20 In music there exists also several other scales, that here we shall not introduce.
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AN INTERVALLIC DEFINITION 35

Testing Other Scales for Maximal Evenness

We will now examine a few other familiar scales to determine if they are
maximally even. In Exercise 1.7, plot the indicated scales on the circle
diagrams. For each scale, complete the given table to determine whether or
not the scale is maximally even. Play each of these scales on a piano and lis-
ten to the interval patterns formed; try to hear these scales as maximally
even or uneven, based on your findings in the exercise.

Plot the indicated scales on the circle diagrams. For each scale, complete
the given table to determine if the scale is maximally even.

a. E harmonic minor scale

b. B melodic minor scale (ascending)

CLOCKWISE DISTANCE BETWEEN DOTS

d distance c distance

Maximally even?

C

F�

D

E
FG

A

B
A�

G�
D�

C�

CLOCKWISE DISTANCE BETWEEN DOTS

d distance c distance

Maximally even?

C

F�

D

E
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A

B
A�

G�
D�

C�
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Play each of these scales on a piano, and listen for the subtle changes
in the order of whole and half steps associated with each one. Observe that
the notes used are the same in each scale/mode; only the tonic notes for the
scales/modes are different. Thus, the collection of notes used and the rela-
tionships between adjacent notes are fixed. The diatonic collection is a term
that generally identifies this particular arrangement of notes, regardless of
tonic, or starting note.

In this book I use the term diatonic in its restrictive sense, to refer to the
pattern of whole and half steps that corresponds to the white keys of a
piano, or transpositions of this pattern. Other sources and contexts some-
times use the term more loosely to include other seven-note collections as
well, such as the harmonic minor and the ascending melodic minor. Eytan
Agmon and other music theorists have defined diatonicism, or a “diatonic
tone-system,” precisely based on some of the same principles discussed in
this text and other similar constructs.3 In this book, I use the term collection
instead of scale when no tonic note or scalar ordering is implied. Using this
term is similar to the approach we took with the augmented triad and
diminished seventh chord, discussed earlier, where we ignored root and
inversion, and instead named these structures more generally. Thus, the
diatonic collection is an unordered group of notes with a fixed arrangement
of whole and half steps (but including rotations of that arrangement); each
of the scales shown in Figure 1.5 are diatonic in this strict sense. The other
musical structures discussed, such as pentatonic and whole tone, also can
be referred to as collections rather than scales. These constructs will be re-
ferred to as collections when generality is implied, but in other cases the
more familiar term scale will be retained when order is implied or when no
ambiguous meaning will result. The term collection is particularly desirable
for the diatonic because all of the scales and modes connected with this col-
lection are prevalent in musical discourse.

Figure 1.5 The scales and
modes that can be formed
using a seven-dot circle

C

F�

D

E
FG

A

B
A�

G�
D�

C�
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Figura 6: (a) 12-note chromatic clock (or Krenek diagram).

(b) The 7 diatonic notes are marked by bullets on the chromatic clock.

Hours are divided into minutes, whereas semitones are divided into cents. The octave consists
exactly of 1200 cents, so that a semitone is approximately 100 cents, and the frequency ratio of
the cent is 21/1200 = 1.0005778.... Therefore, within a single octave, denoting by δCX the distance
between the pitch of a tone X and that of C measured in cents, we have

δCX = [log2 ν(X)− log2 ν(C)]× 1200 cents, i.e. ν(X)/ν(C) ' 2δCX/1200. (1.14)

Still within a single octave, denoting frequencies by ν, thus

log2 ν(C])− log2 ν(C) ' ... ' log2 ν(C)− log2 ν(B) ' 1

12
=

100

1200
= 100 cents. (1.15)

129 Chapter 4: Navigating Sheet Music

Book II

Understanding 
Theory and  
the Language  
of Music

Climbing beyond the staff
Middle C may be powerful, but it isn’t the only note to receive the coveted 
ledger line award. Other ledger lines come into play when you get to notes 
that are above and below the grand staff. Notes written above the treble staff 
represent higher notes, to the right on your keyboard. Conversely, notes writ-
ten below the bass staff represent lower notes, to the left on your keyboard.

For example, the top line of the treble staff is F. Just above this line, sits the 
note G. After G, a whole new set of ledger lines waits to bust out.

A similar situation occurs at the bottom of the bass staff. Ledger lines begin 
popping up below the low G line and low F that’s hanging on to the staff for 
dear life. Figure 4-7 shows a generous range of notes on the grand staff and 
how they relate to the keyboard.

Figure 4-7: 
Notes on 
the grand 

staff.

An octave above, an octave below
Writing and reading ledger lines for notes farther up and down the keyboard 
can get a little ridiculous. After all, if you were to keep using ledger lines, 
you’d take up an impractical amount of space, and reading all those lines 
would become tedious. That’s why composers invented the octave, or ottava 
line, which tells you to play the indicated note or notes an octave higher or 
lower than written. The abbreviation 8va means play an octave above, and 
8vb means play an octave below. Figure 4-8 shows how these octave lines 
appear in written music.

Figura 7: Correspondence between music notation on the staves and the notes on the standard keyboard,
from A1 to E6.

On music notation. It has been noticed that, by introducing the staff about one thousand years
ago, the monk Guido d’Arezzo 21 anticipated the Cartesian coordinates, and also introduced a
first rudimentary example of time-frequency analysis. On the staves abscissas and coordinates
respectively represent time logarithm of the frequency....

21 This was somehow a legendary character: part of the many musical novelties that have been ascribed to Guido
were already in use before his time.
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1.3 Scales and intervals

Major and minor scales. 7-note diatonic scales play a central role in Western music. A large
part of what we call classical music is essentially diatonic, that is, it mainly consists of the notes
of a single diatonic scale. Many pieces however include some nondiatonic tones, to give flavor to
the composition. In particular, this holds for the works of J.S. Bach, Haydn, Mozart, Beethoven
(the main authors of the Baroque and Classical Periods), and also for most of the music of the
Common Practice Period.

Scales are usually labelled by the first note, which is called the key of that scale. For any key
there are two diatonic scales: a major and a minor scale. By octave reduction, the keys are 12, so
there are 12 major diatonic scales and 12 minor diatonic scales, up to octave equivalence.

For instance, the (diatonic) C major scale consists of the pitch classes C,D,E, F,G,A,B, see
Figure 8 (a). When one plays this sequence, usually one repeats the first note at the end, so that
intervals between consecutive notes have the following lengths (here T = whole tone, S= semitone).
By repeating the final note, one can also hear the interval between B and C. So a scale can be
regarded as a finite sequence of notes, and dually as a sequence of intervals between adjacent notes.
22

T, T, S, T, T, T, S. (1.16)

This a sort of footprint of all major scales. 23

Figura 8: (a) Diatonic major scale of C (on the white keys).

(b) Diatonic minor scale of A (on the white keys).

The (diatonic) A minor scale consists of the pitch classes A,B,C,D,E, F,G, and is simply
obtained by applying a ciclic permutation to the C major scale, see Figure 8 (b). So both scales
correspond to the white keys of the keyboard: they consist of the same keys but have different
musical flavour. Here the pattern of intervals between consecutive notes reads 24

T, S, T, T, S, T, T. (1.17)

The 48 major and minor scales are at the basis of the tonal system. There are also some variants
of the minor scale, in particular the harmonic minor scales and the melodic minor scales, which
here we shall not even define. There exist also other 7-note scales, in jazz for instance.

The major and minor scales in the other keys are obtained by transposing (i.e., translating notes
by a fixed number of semitones) these two scales, preserving the respective sequences (1.16) and

22 Maybe rather than to duality here one should refer to inversion: the note is a sort of discrete differential of the
interval, and conversely the interval is a sort of sum of notes......

23 According to the musical tradition of ancient Greece, this consists of two major tetrachords, TTS, separated
by a tone,.

24 This consists of two minor tetrachord, TST , followed by a tone.
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(1.19) of the interval-lengths. For instance, the major and the minor scale of D respectively read

D,E, F ], G,A,B,C], D, D,E, F,G,A,B,C[, D.

(Sharps and flats are inserted, so that any diatonic note occurs in the scale.)
The C major scale and the A minor scale differ just by a permutation of the notes, and are

called relative scales. On the other hand the C major scale and the C minor scale are called
parallel scales. The same terminology is used for scales in the other keys: relative scales have the
same notes, parallel scales have the same key. So in the major/minor system each scale has a
relative scale and a parallel scale.

Modes. Any pair of relative scales are transposed of 3 semitones; e.g., A is distant 3 semitones
lower than C. Two relative scales are also labelled as different modes of the same scale. 25 Actually,
there are also other modes, for each key. For instance, there are seven modes of the scale of C, one
for each of the seven cyclic permutations of C,D,E, F,G,A,B:

D,E, F,G,A,B,C, E, F,G,A,B,C,D, .... B,C,D,E, F,G,A. (1.18)

The second last is the minor scale of A. All correspond to the white keys of the keyboard.
Obviously, these modes correspond to a cyclic permutations of the lengths of the intervals. The
footprints of the modes (1.18) thus read

T, S, T, T, T, S, T, S, T, T, S, T, T, T, .... S, T, T, S, T, T, T. (1.19)

For each key there exists seven modes, which are obtained by transposing those that we just
mentioned.

Quotient sets. In music theory one can find several equivalence relations with the corresponding
quotient sets. Here are some examples.

(i) As we know the 12-note chromatic scale is obtained by octave reduction, it is thus the quotient
with respect to an equivalence relation. 26

(ii) Within a 12-note chromatic scale (so, after octave reduction) there are twelve 7-note diatonic
scales, one for each of the 12 chromatic keys. 27 For each diatonic scale, seven relative modes
are obtained by cyclic permutation. As cyclic permutations define an equivalence relation, each
diatonic scale is a quotient set.

(iii) Two modes of different scales can be considered equivalent if they have the same key. (As
we saw, one then says that the scales are mutually parallel). This defines an equivalence relation,
with quotient set in bijection with the 12-note chromatic scale.

(iv) Two harmonic series (defined ahead) with different initial tones can be identified by relating
harmonics of the same order. This is an equivalence relation. Here the quotient set is reduced to
a singleton, so that one can speak of the harmonic series.

(v) The pattern (1.16) allows one to identify all major scales. Here also the quotient set is
reduced to a singleton, so that one can speak of the major scale.

(vi) We shall see that, assuming equal temperament, notes with sharps and flats are identified:
e.g., C] = D[ (two notes like these are called enharmonic). Moreover, e.g., C[ = B, C]] = D,
D[[ = C, and other similar examples.

25 Loosely speaking, modality, i.e. the use of the seven modes in C characterized the music of the Middle Age,
the Renaissance was a transition period and in the Common Practice Period tonality, with the major/minor scales,
replaced modality. Although the 20th century saw many new trends, including a revival of modality, the tonal
system still pervades popular and commercial music.

Note that major scale and minor scale are misnomers: they actually are two different modes of the diatonic scale,
as they consist of the same notes.

26 This presumes that a tuning system has been selected.
27 In passing note there exist also other (nondiatonic) 7-note scales, that we shall not consider in this survey.
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Minor scales can also be identified, via the pattern (1.19). The same actually applies to each of
the seven modes.

In music theory there are several other quotient sets. For instance, two intervals of the same
length are often identified.

Intervals. Intervals play a major role in music. Although the ability to identify tones is rare,
most people can identify intervals.

Intervals are of two types: melodic and harmonic. Melodic intervals corresponds to nonsimul-
taneus tones, whereas harmonic intervals corresponds to simultaneus tones. They are respectively
represented horizontally and vertically on the musical score.

The denomination of the most relevant intervals of the chromatic scale is indicated below, jointly
with their lengths expressed in semitones (s.t.):

0 s.t. unison (e.g., C4–C4) 12 s.t. octave (e.g., C4–C5)

7 s.t. perfect fifth (e.g., C4–G4) 5 s.t. perfect fourth (e.g., C4–F4)

4 s.t. major third (e.g., C4–E4) 8 s.t. minor sixth (e.g., C4–A[4, A4–F4)

9 s.t. major sixth (e.g., C4–A4) 3 s.t. minor third (e.g., C4–E[4, A4–C4)

2 s.t. major second (e.g., C4–D4) 10 s.t. minor seventh (e.g., C4–B[4, A4–G4)

11 s.t. major seventh (e.g., C4–B4) 1 s.t. minor second (e.g., C4–D[
4).

(1.20)

There is also the interval of 6 semitones (e.g., B3–F4). This is called tritone and is regarded as
highly dissonant.

Notice that two intervals on the same line mutually complement to the octave.
Note that:
(i) the major second, third, sixth and seventh respectively correspond to the interval between

the key and the second, third, sixth and seventh pitch of the major (diatonic) scale.
(ii) the minor third, sixth and seventh respectively correspond to the interval between the key

and the third, sixth and seventh pitch of the minor (diatonic) scale. Note that this does not
apply to the minor second. Any minor interval is a semitone shorter than the corresponding major
interval (this also apply to the seconds).

(iii) the intervals between the key and the fourth and fifth pitch have the same length for the
major and minor scales. For this reason they are called perfect intervals.

With reference to the classical style, the following intervals are regarded as consonant (ordered
by degreasing consonance): unison, octave, 5th, 4th, 3rd, 6th. On the contrary, 2nd, tritone and
7th are considered dissonant. (Here we refer to intervals between notes played simultaneously.)

2 Tuning

The notes are the elements of the musical alphabet. In music notes play a role comparable to
that of real numbers in mathematical analysis. Their construction, that is the definition of their
frequency, is at the basis of the foundation of music.

2.1 The harmonic series

Two numerical transforms. Let us fix any frequency f1, and transform nf1 to the pitch

log2(nf1) = log2 n+ log2 f1 ∀n ∈ N.

Let us neglect the additive constant log2 f1, and denote by m = m(n) ∈ N and r = r(n) ∈ [0, 1[
respectively the integer and fractional part of log2 n, so that

log2 n = m+ r with m ∈ N, 0 ≤ r < 1. (2.1)

12



We thus have two functions:

θ : Nf1 → [0, 1] : nf1 7→ r(n), γ : Nf1 → N : nf1 7→ m(n). (2.2)

The function θ represents the distance between the tone of frequency f and the fundamental
frequency f1, after octave reduction. This consists in the following operations:

(i) normalize the frequency by dividing it by f1, then
(ii) apply the logarithm in basis 2, finally
(iii) reduce the result modulus 1.
The octave counting function γ keeps trace of the specific octave the note belongs to.

The harmonic series. In music a harmonic series is the sequence of the harmonics of the first
tone. 28 Thus, if fn is the frequency of the nth tone, then fn = nf1.

The harmonic series can start from any frequency. All harmonic series are mutually equivalent by
transposition, which corresponds adding a fixed real number to the logarithms of the frequencies, or
equivalently multiplying all frequencies by a fixed positive number. This is obviously an equivalence
relation. So by taking the quotient one can speak of the harmonic series.

We shall see whether one can construct the diatonic, pentatonic and chromatic scales via the
harmonic series. (We anticipate that this will encounter some difficulties.) The function θ of (2.1)
operates as follows:

f1 7→ log2 1 = 0,

2f1 7→ log2 2 = 1
(mod 1)

= 0,

3f1 7→ log2 3 = 1 + log2(3/2)
(mod 1)

= log2(3/2),

4f1 7→ log2 4 = 2
(mod 1)

= 0,

5f1 7→ log2 5 = 2 + log2(5/4)
(mod 1)

= log2(5/4),

6f1 7→ log2 6 = 2 + log2(3/2)
(mod 1)

= log2(3/2),

7f1 7→ log2 7 = 2 + log2(7/4)
(mod 1)

= log2(7/4),

8f1 7→ log2 8 = 3
(mod 1)

= 0, and so on.

(2.3)

By approximating the logarithms and evaluating the function γ, we get

θ(f1) = 0, γ(f1) = 0,

θ(2f1) = 0, γ(2f1) = 1,

θ(3f1) = log2(3/2) ' 7/12, γ(3f1) = 1,

θ(4f1) = 0, γ(4f1) = 2,

θ(5f1) = log2(5/4) ' 4/12, γ(5f1) = 2,

θ(6f1) = log2(3/2) ' 7/12, γ(6f1) = 2,

θ(7f1) = log2(7/4) ' 10/12, γ(7f1) = 2,

θ(8f1) = 0, γ(8f1) = 3, and so on.

(2.4)

Here we rounded logarithms to multiples of 1/12, since the chromatic scale consists of 12 notes.
Defining

γ(n) = the closest integer to β(nf1) for n = 0, ..., 12, (2.5)

we can then assign a chromatic note to each entry of the harmonic series, after octave reduction.

Harmonic series and scales. For the moment let us apply octave reduction.

28 Here series is what in mathematics is called sequence. The sequence of the periods of the harmonic series is
{T, T/2, ..., T/n, ...}, which is proportional to what in mathematics is called the harmonic sequence. Moreover, in
mathematics the harmonic series is the divergent series

∑
n n

−1.
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By (2.6),

θ(2f1) = 0, (2.6)

θ(3f1) = log2(3/2) ' 7/12. (2.7)

On the chromatic clock if we start from C and make 7 steps we get G, which corresponds to 7
o’clock. This is the 8th of the 12 chromatic notes, and is the 5th of the 7 diatonic notes. 29 With
reference to the latter scale, one accordingly says that G is the fifth of C.

θ(5f1) = log2(5/4) ' 4/12. (2.8)

On the chromatic clock if we start from C and make 4 steps we get E, which corresponds to 4
o’clock. This is the 5th of the 12 chromatic notes, and is the 3rd of the 7 diatonic notes. One says
that E is the major third of C.

θ(7f1) = log2(7/4) ' 10/12. (2.9)

Thus θ maps the frequency 7f1 to log2(7/4) ' 10/12. On the chromatic clock if we start from C
and make 10 steps we get A], which corresponds to 10 o’clock. This is the 11th of the 12 chromatic
notes, and is no diatonic note.

The approximation log2(7/4) ' 10/12 is rather crude, more that the other approximations of
(2.3). The actual pitch is intermediate between 9/12 and 10/12, so between A and A], closer to
A] than to A. The pitch A is the 10th of the 12 chromatic notes, and the 6th of the 7 diatonic
notes. One says that A is the sixth of C. Thus A] is the projection (more precisely, the element of
minimal distance on the logarithmic scale) of the seventh harmonic onto the chromatic scale, and
A is its projection onto the diatonic scale.

Not only the approximation of the 7th harmonic is poor (for the 11th is even poorer), it is also
somehow dissonant with the previous harmonics. 30 This should not be regarded as a drawback
of the harmonic series, but rather as a shortcoming of the diatonic scale. 31

Two examples of harmonic series. Let us fix a frequency f1, and denote by Hn the nth note of
the corresponding harmonic series. Here we do not apply octave reduction, and append the octave
number to the notes as an index. For instance, if the fundamental note (i.e. the first note) of the
harmonic series is C2, here are the first 16 harmonic tones with their chromatic approximations:

H1 = C2, H2 = C3, H3 ' G3, H4 = C4,

H5 ' E4, H6 ' G4, H7 ' A]4, H8 ' C5,

H9 ' D5, H10 ' E5, H11 ' F ]5 , H12 ' G5,

H13 ' G]5, H14 ' A]5, H15 ' B5, H16 = C6, ...

(2.10)

By applying octave reduction and preserving the order, we get the sequence

H̃1 = C, H̃2 = G, H̃3 = E, H̃4 = A],

H̃5 = D, H̃6 = F ], H̃7 = G], H̃8 = B, ...
(2.11)

The mismatch with the diatonic scale is evident. However, we shall see that the very first notes
of the harmonic series provide the basis for the construction of this scale.

29 This corresponds to counting by ordinals instead of cardinals. For instance a fifth plus a third is a seventh,
although by counting the semitones we have 4 + 2 = 6. We use a similar terminology for centuries: for instance, the
’800 is called the 19th century.

30 Hindemith even refused to call harmonic this as well as higher components of the harmonic series.
31 If we desired a fully harmonic scale, we might deal with the 8-note scale that is provided by the first harmonic

up to 28f1. Apart the historical reasons, why don’t we do so? Maybe so harmonic a scale would be too boring?
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The approximation of the pentatonic scale is better. After reordering, the first 5 pitch classes
of (2.11) are C,D,E,G,A]. If we replace A] by A (we saw that both approximate the real tone),
we get C,D,E,G,A. This is called a (minor) pentatonic scale, and is the first scale that was
discovered by the Chinese more than 2000 year ago. 32

One can repeat the same procedure starting from any other note, or equivalently one can
transpose the harmonic series above.

Let us consider another example. As ν(A4) was fixed at 440 Hz, 33 computations are especially
simple by selecting A2 (i.e., the A of the second octave) as fundamental note. A calculation like
that above shows that the harmonic series of A2 reads

A2, A3, E4, A4, C]5, E5, G5, A5, ... (2.12)

The corresponding frequencies are exactly

ν(A2) = 110 Hz, ν(A3) = 220 Hz, ν(E4) = 330 Hz, ν(A4) = 440 Hz,

ν(C]5) = 550 Hz, ν(E5) = 660 Hz, ν(G5) = 770 Hz, ν(A5) = 880 Hz, ....
(2.13)

These are in the ratios ν(A2) : ν(A3) : ... : ν(A5) = 1 : 2 : ... : 8, consistently with the definition of
the harmonic series. 34

Remarks. (i) In the construction of the harmonic series we introduced two approximations: we
assumed that the length of the semitone is approximately uniform, see (1.13), and rounded the
function θ, see (2.6). This is not surprising, since we were transforming the continuous family of
frequencies to a finite set of notes.

(ii) For any integer n, the number of entries of the harmonic series up to 2nf1 is 2n. The
sequence can also be divided into batches of consecutive octaves. The batch between 2nf1 and
2n+1f1 includes 2n entries, which are representatives of all the pitch classes up to 2n+1f1. Therefore
the entries up to 2n+1f1 comprise exactly 2n pitches.

About musical instruments. As we saw, the pitch of a T -periodic sound is related to the fun-
damental frequency f1 = 1/T . The timbre of a musical instrument or of a human voice depends on
the ratios {Ik/I1 : k ∈ N} between the intensity of the k-th harmonics and that of the fundamental
harmonic. These ratios determine how the acoustic power is distributed among the harmonics. A
tuning fork just produces a monochromatic signal, namely a sound of a single frequency, namely a
pure tone without overtones. The sing and the sound of musical instruments are richer in harmo-
nics. (The more they are, the more the sound looks bright. The less they are, the more the sound
looks warm or dark.) On the other hand, our acoustic perception does not distinguish differences
in phase of different harmonics. This depends on the human physiology of hearing, namely the
inner ear and the brain.

32 By raising these frequencies of 6 semitones, this scale is transposed to F ], G], A], C], D], which correspond to
the five black keys of a keyboard. The harmonic origin of the pentatonic scale explains why any tune played on the
black keys is pleasant to the hear.

33 This was an official decision taken at various international conferences in 1939, 1953, 1955. In the Baroque
period the central A varied somehow between 400 and 450 Hz.

In Italy this is prescribed by a law of the state, which also establishes a fine for transgressors. The Legge 3 maggio
1989 reads: “Articolo 5 : L’utilizzazione di strumenti di riferimento non conformi all’articolo 3 [frequenza di 440 Hz
del “la” centrale] è punita con una sanzione amministrativa per ogni esemplare da lire centomila a lire un milione.”
This is how out-of-tune is prosecuted in the Bel Paese.

Nowadays many symphonic orchestras tune to A = 443 Hz; many modern ensembles which specialize in the
performance of Baroque music have agreed on a standard of A = 415 Hz, which is one semitone flatter than A =
440 Hz (absolutely illegal ...).

34 The harmonic series that is generated by F reads F, F,C, F,A,C,E, F,G,A,B[, D, .... By excluding repetitions
and by reordering, we get a seven-note scale: C,D,E, F,G,A,B[; this is called the harmonic scale of C. (It should
not be confused with the harmonic minor scale of C, see ahead)
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For instance, a clarinet produces mainly odd-numbered harmonics, whereas a guitar generates
even as well as odd harmonics. This is due to the structure of these instruments: a tube open at
one end for the clarinet, strings tied at both ends for the guitar. The series (1.1) must converge; in
many cases the intensity of the harmonic components decreases as the frequency increases, but it
is not always so. For instance, for pianos the intensity rapidly decays from the first to the second
component, and then decays more slowly. 35 As we pointed out, the sound of a real musical
instrument may also include inharmonic components. For instance, for the sound produced by a
piano includes the harmonic components generated by the strings and by the (wooden) harmonic
table, as well as the inharmonic components due to the stiffness of the strings and of the wooden
frame.

About keyboards. Let f1 be the nominal frequency of a key. By this we mean that playing the
key generates a wave of fundamental frequency f1, which includes overtones of frequency fn = nf1
for n = 1, 2, .... Moreover, the strings that have fundamental frequency nf1 will also resonate, if
they are not constrained. By pressing the sustain pedal (the one on the right), the pianist allows
the other keys to resonate, by removing a constraint. This enhances the color of the performance.

For instance, on an acoustic piano first one can play the key G3, the third harmonic of C2. Next
one can gently press the key C2 without producing any sound; while keeping that key pressed, one
can then play the key G3 again. As one can perceive, the sound that is now produced by G3 is
richer than the previous one. This effect can be increased by keeping the sustain pedal of the piano
pressed.

As we saw, if for instance f1 corresponds to the note A2, then the frequencies 2f1, 4f1 respectively
correspond to the notes A3 and A4, of the same pitch class. A different pitch class occurs just by
the third harmonic, which is the note E3 in this case. Other An’s, En’s and other pitch classes
follow with higher harmonics. Therefore by pressing that key produces several pitches, but the
intensity of the pitch class A clearly prevails, so that we have good reason for associating this pitch
class to that key.

By (2.3), just higher octaves can resonate. This has the following acoustic asymmetric effect,
which can be clearly perceived by the ear. By pressing a key of a lower octave (i.e., at the left side
of the keyboard), one triggers the resonance of the higher octaves; this makes the sound warm. On
the other hand, by pressing a key of a higher octave (i.e., at the right side of the keyboard), less
strings can resonate, and the sound is less colorful.

2.2 Pythagorean tuning

The term tuning (or intonation or temperament) indicates a system that fixes the frequencies of
the tones of a musical scale exactly, making more precise the assumption (1.13). Here we outline
the Pythagorean and Ptolomaic tunings, and equal temperament.

Small ratios. If the ratio between the fundamental frequencies of two tones can be represented as
a fraction of two relatively small integer numbers (e.g., 5/4 but not 234/128), 36 then these sounds
share a certain number of overtones of relatively low order. This tends to make the overlapping of
these sounds agreeable, consistently with the theory of consonance that we outlined above. (Notice
that two overtones may have close frequencies, but this cannot occur for low order overtones.)

Overtones of low order are the most relevant, since most often they have larger amplitude than
overtones of high order, and thus they acoustically prevail over the latter. The degree of this
prevalence depends on the musical instrument under consideration, be it the human voice or a
mechanic or electronic instrument. Typically, this is determined by the very first overtones. In

35 By piano we shall refer to the traditional acoustic (or mechanical) piano. This may be an upright (or vertical)
piano, or a grand piano; the latter is heavier and larger, and is used in concerts. Digital pianos simulate the sound
of mechanical pianos, but they play sampled sounds, rather then producing them mechanically.

36 Musicians call these ratios small ratios. So for instance 7/2 is a small ratio, but 2/1000 is not. They also call
7/2 an irrational number, because it is a fraction. (A world apart...)
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particular, as we saw, three of the first four harmonics of a sound are in the same pitch class as
the fundamental tone, and this suffices for ascribing that pitch class to that sound. 37

For instance, two pitch classes that are a fifth apart, e.g. C and G, have frequency ratio 3/2,
since 2ν(Gn) = 3ν(Cn) for any n ∈ N. Therefore

2mν(Gn) = 3mν(Cn) ∀m ∈ N,∀n ∈ Z, (2.14)

that is, the frequency of the overtone of Gn of order 2m coincides with the frequency of the overtone
of Cn of order 3m; see Figure 9. Actually, Cn and Gn are low order harmonics of Cn−1, since, by

Figura 9: Harmonics of C and G, represented by the distribution of power as a function of the logarithm
of the frequency.

octave equivalence

ν(Cn) = 2ν(Cn−1), ν(Gn) = 2ν(Gn−1)
(2.14)

= 3ν(Cn−1) ∀n ∈ Z.

The Pythagorean tuning. Pythagoras (ca. 569 BC - ca. 475 BC), and the Chinese before
him, constructed musical scales. Of course they ignored Fourier series, and considered length
proportions of rudimentary musical instruments: strings for Pythagoras, bamboo pipes for Ling
Lun, the legendary founder of music in ancient China. Pythagoras calculated the mathematical
ratios of musical intervals using a monochord, namely, a string fixed at its ends. By fixing the
string also at an intermediate point, and then plucking one of the two parts, he was able to
produce sounds of different frequencies. E.g., by halving the length of the chord, the period is
halved, namely the frequency is doubled; by reducing the length to 1/3, the period is divided by
3, namely the frequency is multiplied by 3; and so on.

The Pythagorean scale only used the ratios 2/1 (octave), 3/2 (perfect fifth), and the complement
of the latter to the octave 4/3 (perfect fourth), since only these intervals were regarded as consonant
in ancient music. So the notes that they considered have frequency ratios of the form 2m3n, with
m,n ∈ Z. In the Renaissance further intervals were included among the consonant ones, and this
led to the formulation of just tuning, see ahead.

The progression of the fifths. Let us move from the pure tone F3, without assuming octave
reduction. As we saw in (2.6), along the sequence of the overtones of F3, the first new pitch class is
encountered with the third harmonic, C4. As we saw, this is a fifth higher than F3, and (denoting
the frequency of F3 by f0) has pitch

log2(3f0) = log2 3 + log2 f0 = 1 + log2(3/2) + log2 f0
(mod 1)

= log2(3/2) + log2 f0.

37 If the amplitude of the components decreases with the order, the fifth has just the bronze medal, whereas on
the side of the fundamental there are golden and silver medalists, with the first of the nonmedalists: the prevalence
is overwhelming.
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Along the harmonic series the frequency varies through an arithmetic progression of multiples of
f0: 2f0, 3f0, ..., nf0,.... Here we let the frequency vary through a geometric progression of common
ratio 3/2, namely f0, (3/2)f0, ..., (3/2)nf0,.... In this way we fix the frequency of successive fifths
exactly.

Neglecting the additive constant log2 f0, the mapping from frequency to pitch class reads

f0 7→ 0,
(3/2)f0 7→ log2(3/2),

(3/2)2f0 7→ log2(9/4) = 1 + log2(9/8)
(mod 1)

= log2(9/8),

(3/2)3f0 7→ log2(27/8) = 1 + log2(27/16)
(mod 1)

= log2(27/16),

(3/2)4v 7→ log2(81/16) = 2 + log2(81/64)
(mod 1)

= log2(81/64),

(3/2)5v 7→ log2(243/32) = 2 + log2(243/128)
(mod 1)

= log2(243/128),

(3/2)6f0 7→ log2(729/64) = 3 + log2(729/512)
(mod 1)

= log2(729/512),

(2.15)

and so on. This yields the following correspondence between frequencies and notes:

f0 7→ F3,

(3/2)f0 7→ C4,

(3/2)2f0 7→ G4,

(3/2)3f0 7→ D5,

(3/2)4f0 7→ A5,

(3/2)5f0 7→ E6,

(3/2)6f0 7→ B6.

(2.16)

By further progressing by fifths, we determine the frequency of pitch classes with sharps: F ], C], G],
and so on. After reordering, according to the Pythagorean tuning we get the following ratios bet-
ween the frequencies of the diatonic notes of the octave and the frequency of the fundamental
note:

ν(D)

ν(C)
=

9

8
,

ν(E)

ν(C)
=

81

64
,

ν(F )

ν(C)
=

4

3
,

ν(G)

ν(C)
=

3

2
,

ν(A)

ν(C)
=

27

16
,

ν(B)

ν(C)
=

243

128
.

(2.17)

Here we find just two lengths for intervals between consecutive notes: log2(9/8) (whole tone) and
log2(256/243) (semitone). But the whole tone is not the double of the semitone, as log2(9/8) 6=
2 log2(256/243).

On the other side, regressing by fifths from F3, one gets B[2, E
[
2, A

[
1, D

[
1, G

[
0. This completes the

construction of the 12-tone chromatic scale, see Figure 10:

..., G[, D[, A[, E[, B[, F, C,G,D,A,E,B, F ], ... (2.18)

In principle, the progression goes to infinity on either side. Every step of the progression produces
a new note, which does not coincide with any of those that had already been defined. In other
terms, the notes of the progression is not periodic. So the progression moves along a spiral. We
shall get a circle just with equal temperament. (Just tuning is not comparable, since there we have
two generators: fifths and (major) thirds; so we have two directions of movement.)

Alternative progressions. As log2[(3/2)−1]
(mod 1)

= log2(4/3), by octave reduction the inverse of
a fifth is a fourth:

5th up ⇔ 4th down 4th up ⇔ 5th down. (2.19)
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Rather than stacking fifths, Pythagoras equivalently proceeded by alternating fifths forwards,
5th

↗, with fourths backward,
4th

↘. (This also allowed Pythagoras to define the whole tone.) In this
way, still starting e.g. from F3, one gets

F3

5th

↗ C4

4th

↘ G3

5th

↗ D4

4th

↘ A3

5th

↗ E4

4th

↘ B4. (2.20)

These notes are confined to one octave (from F3 toE4). One might equivalently proceed to the left

of F3 alternating fourths forward,
4th

↗, with fifths backward,
5th

↘.
In principle, the progression goes to infinity on either side. Every step of the progression produces

a new note, which does not coincide with any of those that had already been defined.

TENSANDO LA CUERDA

En resumen, y tomando el do con valor normalizado a 1:

Nota Do Re Mi Fa Sol La Si Do

Relación de 
frecuencias

1 9/8 81/64 4/3 3/2 27/16 243/128 2

Este proceso se puede continuar para determinar las afinaciones de las teclas negras 
o bemoles, descendiendo por quintas desde el Ja.

Nota n Solb Lai> Sit

Relación de 
frecuencias

256/243 32/27 1024/729 128/81 16/9

La c o m a  p ita g ó r ic a

Al ascender una quinta de si, se llega al fa #, que debería ser el mismo sonido que el sol\, 
alcanzado en el otro extremo tras hacer las cancelaciones de octava correspondientes. 
Pero estos dos sonidos no son exactamente iguales: la diferencia entre e l/j#  y el sol\, 
se denomina «coma pitagórica». Del mismo modo, tras hacer las cancelaciones de oc­
tava correspondientes, los sonidos extremos Jal-re^  no se encuentran a la distancia 
de una quinta justa, sino que forman un intervalo que difiere de ella en una coma 
pitagórica. Esta quinta ligeramente más pequeña se denomina «quinta del lobo».

El armado del círculo de quintas involucra el encadenamiento de doce quintas, 
llegando a una nota que es «casi» la misma que la del comienzo, sólo que a una 
distancia de siete octavas:

La coma pitagórica es ese «casi». Se puede calcular su valor (llamémoslo CP) 
partiendo de una frecuencia/y comparando el encadenamiento doce quintas a par­
tir d e /co n  el encadenamiento de siete octavas:

CP = = 1,013643265.
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Figura 10: Generation of the chromatic scale by progression of the fifths.

Remarks. (i) Let us consider the extended version of the progression of the fifths:

..., F [, C[, G[, D[, A[, E[, B[, F, C,G,D,A,E,B, F ], C], G], D], A], E], B], ... (2.21)

Here we just displayed three batches of 7-note diatonic sequences. Further left we get the double
flats: F [[, ..., B[[, whereas further right we have the double sharps: F ]], ..., B]].

Note that the notes of any pair of these consecutive batches are shifted by a semitone.
(ii) This progression generates the chromatic, diatonic pentatonic scales in the sense that next

we explain.
Starting from any tone, each batch of 12 consecutive tones forms a chromatic scale. All twelve

chromatic scales are generated in this way.
Starting from any tone, each batch of 7 consecutive tones forms the elements of a diatonic scale;

more precisely, the second element of the batch is the key of that scale. All seven diatonic scales
are generated in this way. For instance, by reordering,

F,C,G,D,A,E,B → diatonic scale of C,

C,G,D,A,E,B, F ] → diatonic scale of G,

G[, D[, A[, E[, B[, F, C → diatonic scale of D[.

(2.22)

Similarly, each batch of 5 consecutive tones forms the elements of a pentatonic scale. All five
pentatonic scales are generated in this way.

(The above properties of symmetry stem from the translational invariance of the progression of
the 5ths, and in turn this is based on the analogous symmetry of the harmonic series.)

2.3 Ptolomaic tuning

Ptolomaic just tuning. Up to all the Middle Age octaves, perfect fifths and perfect fourths were
regarded as the only consonant intervals, and the Pythagorean tuning was used. In the Renaissance
thirds started to be considered consonant, and in the 16th century Gioseffo Zarlino proposed a
tuning that Ptolomeus had formulated in the 2th century a.C.. 38

38 Claudius Ptolomeus was a mathematician and an astronomer. He is especially known for his geocentric model
of the universe, which was the paradigm of astronomy untill Copernicus formulated his heliocentric theory. (As we
know, in ancient times music mathematics and astronomy were strictly related. The great astronomer Johannes
Kepler also strictly related astronomy and music.)
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The Pythagorean tuning proceeds by (perfect) fifths, with no concern for (major) thirds, which
are defined by the ratio 81/64 just as an indirect outcome of the procedure, see (2.17). On the other
hand, the harmonic series yields the small ratio 5/4 (= 80/64) for thirds. The ratio between these
two fifths is 81/80, which from the musical point of view is not negligeable. The Ptolomaic tuning,
combines progression in two directions: by (perfect) fifths and (major) thirds. This corresponds
to representing frequencies ratios in the form 2m3n5p, with m,n, p ∈ Z. 39 The use of three prime
numbers instead of two yields smaller ratios than those of the Pythagorean system.

Let us consider four consecutive fifths: F,C,G,D. After octave reduction, they correspond to
the frequency ratios

ν(F )

ν(C)
=

4

3
,

ν(G)

ν(C)
=

3

2
,

ν(D)

ν(C)
=
ν(D)

ν(G)
· ν(G)

ν(C)
=

9

4

(mod 1)
=

9

8
.

Next we progress by third from F , C and G, getting respectively A, E and B, which correspond
to the frequency ratios

ν(A)

ν(C)
=
ν(A)

ν(F )
· ν(F )

ν(C)
=

5

4
· 4

3
=

5

3
,

ν(E)

ν(C)
=

5

4
,

ν(B)

ν(C)
=
ν(B)

ν(G)
· ν(G)

ν(C)
=

5

4
· 3

2
=

15

8
.

After reordering we get the following ratios

ν(D)

ν(C)
=

9

8
,

ν(E)

ν(C)
=

5

4
,

ν(F )

ν(C)
=

4

3
,

ν(G)

ν(C)
=

3

2
,

ν(A)

ν(C)
=

5

3
,

ν(B)

ν(C)
=

15

8
.

(2.23)

This construction produces the same ratios starting from any other diatonic note. We can thus
compare the two sequences (2.17) and (2.23). In the latter the third and the sixth are defined by
smaller ratios, respectively 5/4 and 5/3, thus they are more harmonic than in (2.17). In (2.23) the
minor thirds EG and AC also have a small ratio, 6/5. However, the minor third DF has the less
consonant ratio: 32/27.

Here we have a semitone of ratio 16/15, and two whole tones of ratios 9/8 and 10/9, and neither
of the latter is the double of the semitone.

Tuning the minor scale. Diatonic triads, namely chords of three diatonic notes, are at the basis
of the Western harmony, since the 18th century. The notes of the major triads, FAC, CEG and
GBD are in the ratio 1 : 5/4 : 3/2, whereas the notes of the minor triads are in the following ratios

FAC → 4/3 : 5/3 : 2, CEG→ 1 : 5/4 : 3/2, ACE → 3 : 15/4 : 9 : 4.

In (2.23) we tuned the octave using fifths and major thirds, and thus we derived the frequency
ratios for the major diatonic scale of C. As an alternative, one can tune the octave using fifths and
minor thirds, and thus derive the frequency ratios for the minor diatonic scale of A. This yields
the following (small) ratios

ν(B)

ν(A)
=

9

8
,

ν(C)

ν(A)
=

6

5
,

ν(D)

ν(A)
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4

3
,

ν(E)

ν(A)
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2
,

ν(F )

ν(A)
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8

5
,

ν(G)

ν(A)
=

9

5
.

(2.24)

39 We can thus associate this tuning with the multiplicative subgroup of R+ generated by 2, 3, 5, and that
generated by 2, 3 for the Pythagorean tuning.
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These frequencies of the minor scale are consistent with those of the major scale, see (2.23). For

instance, ν(C)
ν(A)

ν(A)
ν(C) = 6

5
10
6 = 2. Merging the frequencies of the major and minor scales, one

can easily get those of the chromatic scale. We leave this task to the reader. (For instance,
ν(E[)
ν(C) = ν(C)

ν(A) = 6
5 .)

2.4 Equal temperament

Drawbacks of Pythagorean and Ptolomaic tunings. By the Pythagorean tuning, having
produced more than 12 pitch classes, one might wonder whether two of them coincide. As pitches
were constructed iteratively, this would entail that the progression is periodic. But

(3/2)12 ' 129.75 > 128 = 27 ,

12 (perfect) Pythagorean fifths are slightly sharper than 7 octaves. The frequency ratio between
12 Pythagorean fifths and 7 octaves is called the Pythagorean comma, and equals

ν(F ])/ν(G[) = (3/2)12
/

27 = 312
/

219 = 1.01364... (2.25)

By (1.14), on the logarithmic scale this corresponds to the distance

[log2 ν(F ])− log2 ν(G[)]× 1200 = [log2(1.01364...)]× 1200 = 23.5... cents. (2.26)

i.e., almost a quarter of semitone.
The progression of the fifths is not closed, that is, it is not periodic. If it were so, then after

a suitable number of fifths one would retrieve the same note with a frequency ratio equal to an
integer power of two. This is impossible, since

(3/2)h 6= 2k ∀h, k ∈ N, (2.27)

namely, 3h 6= 2h+k for any integer h, k. The same conclusion holds for the Ptolemaic just tuning,
since

∀m,n, p, h ∈ Z, np 6= 0 ⇒ 2m3n5p 6= 2k. (2.28)

The same applies to the progression of the thirds. For instance, starting by C4 and progressing
by thirds, one would get the ordering C4, E4, G4, B4, D5, F5, A6. This yields qualitatively similar
outcomes, with the same diatonic scale, but each with slightly different frequencies, and still with
unequally spaced pitches. In conclusion, none of these methods nor the many variants that were
suggested over the centuries can overcome the drawbacks we just illustrated.

Equal temperament. A way of overcoming these difficulties was provided by equal temperament,
as the outcome of a long historical process. Equal temperament had been known in China for a
long time, and was officially adopted in 1596. It was first proposed in the West by Aristoxenos of
Taranto about 320 b.C., it was also advocated e.g. by Vincenzo Galilei (father of Galileo) in 1581,
and is sometimes improperly ascribed to a work of Werckmeister of 1691. It gradually entered
Western music practice at the end of Renaissance.

By equal temperament the octave is divided into a family of equally spaced intervals (on the
logarithmic scale, of course). In this way the Pythagoren comma is uniformly spread over the
octave, or equivalently over the interval G[-F ], so that G[ = F ] up to octave reduction. This
would not be possible by applying rational increments of frequency. As we saw, the ratio between
the frequencies of two contiguous Cs is 2, and there are 12 semitones in each octave; the uniform
ratio between the frequencies of two tones that are a semitone apart should then be 21/12, which
is irrational.

As a fifth, a major third and a minor third respectively correspond to 7, 4 and 3 semitones, with
equal temperament these ratios are replaced by

7× 21/12, 4× 21/12, 3× 21/12, respectively, (2.29)
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preserving their mutual proportion, as it occurs in just tuning.
It is not easy to find a mechanical device for tuning with equal temperament. Several instruments

are tuned by ear, striking a compromise between the harmonicity of fifths and thirds.

The circle of the fifths. Equal tuning has several advantages: in this set-up no approximation
is needed to close the progression of the fifths. Starting from G[ one gets G[, D[, ..., B, F ], ... as
in (2.21). But, at variance with the Pythagoren tuning, here F ] = G[, closing the circle. The 12
note pattern

F ] = G[, D[, A[, E[, B[, F, C,G,D,A,E,B (2.30)

is thus indefinitely repeated on both sides. This is called the circle of the fifths.
Note that here “the sharps coincide with the flats”, in the sense that

C] = D[, D] = E[, F ] = G[, G] = A[, A] = B[. (2.31)

Moreover, double flats and double sharps can be dropped:

C]] = C,D]] = D, ... C[[ = C,D[[ = D, .... (2.32)

By using just twelve notes, one can thus transpose musical pieces without retuning keyboards.
There is less variety, but more order, and of course this is much more practical. 40

Anyway equal temperament has a price: one reproduces the harmonic scale only approximately.
We associated this scale to the Fourier expansion with frequencies that are in integer ratios: here
all that is lost, or at least is just an approximation. From this point of view, every tone is out of
tune. But the error is spread uniformly over the twelve pitches. (Some musicians object that in
this way we can play everything, but we play it poorly.)

Just Intonation
The equally tempered tuning that is forced upon us by instrument manufacturers is not

actually true to pure intervals. Compare, for example, a pure major third with an equally

tempered major third. The tempered third is equivalent to 400 cents, while the pure major

third is 384 cents—a difference of some 16 cents (or 16 percent). Through use of fine-tuning

options, such as those provided by Cubase, you can now employ pure intervals. This is called

just intonation.

Pythagorean Intonation
Another type of intonation is Pythagorean intonation, in which each note of the scale is tuned in

pure fifths of ratio 3/2. Also used in traditional Chinese and Arabian music, it generates its own

unique interval set, too. The 12-toned chromatic scale as tuned in equal temperament, just into-

nation, and Pythagorean intonation would appear as you see in Table 25.1.

Table 25.1 Twelve-Toned Chromatic Scale Tuned in Equal Temperament,
Just Intonation, and Pythagorean Intonation

Equally Tempered Just Intonation Pythagorean Intonation

Note Cents Ratio Cents Ratio Cents

C 0000 1/1 0000 1/1 0000

Db 0100 16/15 0112 256/243 0090

D 0200 9/8 0204 9/8 0204

Eb 0300 6/5 0316 32/27 0294

E 0400 5/4 0386 81/64 0408

F 0500 4/3 0498 4/3 0498

F# 0600 45/32 0590 729/512 0612

G 0700 3/2 0702 3/2 0702

Ab 0800 8/5 0814 128/81 0792

A 0900 5/3 0884 27/16 0906

Bb 1000 9/5 1018 16/9 0996

B 1100 15/8 1088 243/128 1110

C 1200 2/1 1200 2/1 1200

278 Music Theory for Computer Musicians

Figura 11: Comparison of temperaments.

Mini English-Italian musical vocabulary:

40 We have seen that the progression by fifths generates all the 12 pitches. Does the same happen for the
progression by fourth? or by major thirds? or by minor thirds? or by major seconds? or by minor seconds?
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beats = battimenti,
chord = accordo,
equal temperament (or equal tuning) = temperamento equabile,
flat = bemolle (= nota più bassa di un semitono),
grand piano = pianoforte a coda,
half tone = semitone = semitono,
key = tasto, oppure chiave (ovvero tonalità di un brano),
musical score (or sheet music) = spartito (o partitura musicale),
note = nota,
octave = ottava,
overtone = (suono) armonico successivo a quello fondamentale,
pitch = altezza (di un suono),
pitch class (by octave reduction) = nota,
to play = suonare,
sharp = diesis (= nota più alta di un semitono),
staff = stave = pentagramma,
tone = nota, oppure somma di due semitoni,
tune = intonazione,
to tune = accordare,
tuning fork = diapason,
triad = triade (accordo di tre note).
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Aprile 2016, 31–49
S. Isola: Su alcuni rapporti tra matematica e scale musicali. Matematica, Cultura e Società.
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https://mat.unicam.it/sites/mat.unicam.it/files/pls/Materiale_08_09/isola.pdf

P. Oddifreddi:

https://scuola.repubblica.it/blog/video/odifreddi-la-musica-spiegata-con-la-matematica/

D. Kung:

https://www.youtube.com/watch?v=ROeBLYvTv8Y

L. Bernstein’s:

https://www.youtube.com/watch?v=8fHi36dvTdE

2.5 Musical Questionnaire.
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— What is a pure tone? What is a complex tone? What is a harmonic?
— What is the frequency of a sound? In which units is it measured?
— What is the timbre? Can it be related to the Fourier series of a sound?
— What is the difference between acoustic and psychoacoustic?
— What is the acoustic power of a sound? Is it a perceptual entity?
— What is loudness? Can it be measured?
— What is consonance? Is it an acoustic quality? Can beats be related to consonance?
— What does the Fechner law state?
— What is the octave equivalence? What is the octave reduction?
— What does it mean to transpose a piece of music?
— What is the diatonic scale? What is the chromatic scale?
— What is the harmonic series?
— What are the first 6 pitches of the harmonic series of F? and those of the harmonic series of

C?
— Which problem there is for the seventh harmonic?
— The frequency of A4 is conventionally fixed at 440 Hz. What are then the frequencies of the

first 4 terms of the harmonic series of A1? and of A5?
— What is a musical interval?
— Can you transpose (forward) the scale of C major of a semitone?
— What is Just Intonation?
— What is the key of the scale of F ]?
— Which note is the perfect fifth of C2? and of G3]?
— B] =?, C[ =?;
— Is C a chromatic note? is C] diatonic?
— Which pitch class is the major third of D? and the minor third of F ]?
— May a diatonic scale include altered notes (i.e., flats or sharps)?
— What are the pitch classes of the G major scale? and of the C minor scale?
— What are two parallel scales?
— Is there any relation between the C minor scale and the E major scale?
and between the C minor scale and the E[ major scale?
and between the C] minor scale and the E major scale?
— Do the C major scale and the E minor scale consist of the same notes?
— Which is the relative scale of E major? and of E minor?
— Which is the parallel scale of E major? and that of E minor?
— What are the modes?
— What is a minor third? What is the minor third of C? and that of G?
— What are the first 3 terms of the progression of the fifths, starting from C?
— What are the drawbacks of the Pythagorean tuning?
— What is equal temperament?
— In equal temperament what is the frequency ratio of two notes at the distance of a semitone?

and if the distance is a minot third?
— Does octave reduction entail Just Intonation?
— Is Just Intonation a theorem or an assumption?
— Does octave reduction entail equal temperament?
— Is equal temperament a theorem or an assumption?
— What are the fundamental differences between a harmonic series and a scale?
— We have seen that the progression by the fifths generates all the 12 pitch classes. Does the

same happen for the progression of the fourths? or of the major thirds? or of the minor thirds?
or of the major seconds? or of the minor seconds?

— (a) Let X be the family of all major and minor diatonic scales. What is the cardinality of X?
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(b) Let us say that two elements of X are equivalent if they consist of the same notes. (For
instance, the C major scale and the C minor scale are not equivalent.) How many are then the
elements of the quotient set?

— What is the frequency ratio of an ascending harmonic major fourth? and that of a descending
major fourth?

— What is the frequency ratio of an ascending harmonic major third? and that of a descending
major third?

— What are the frequencies of the first four overtones of 1000Hz?

— Determine m,n, p ∈ N such that ν(C)
m = ν(E)

n = ν(G)
p in Just Tuning.

— Which ratios corresponds to the intervals C4 −G4, G− 3− C4 and C4 −G5 in Pythagorean
tuning? and in Just Tuning?

— Assume that the first terms of the harmonics series have coefficients a0 = 0, a1 = b1 = 4,
a2 = b2 = 3, a3 = b3 = 2 a3 = b3 = 1, an = bn = 0 for any n > 4. Establish the distribution of
acoustic energy among the harmonics.
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