
Partial Differential Equations – A. Visintin – a.a. 2011-12

These pages are in progress. They contain:
— an abstract of the classes;
— notes on some (few) specific issues.
These notes are far from providing a full account of the classes, that are mainly based on the book

of Renardy and Rogers ([ReRo]) for the first part of the course, and on some other notes for the second
part.

1 Basic Second-Order PDEs

Classes. (see [ReRo; chap. 1]) Review of ordinary differential equations (ODEs). Existence and
uniqueness result. Gronwall’s lemma.

Laplace equation. Boundary conditions. Solution by separation of variables. Energy equality.
Variational formulation. Minimizational formulation. Maximum principle.

Heat equation. Boundary and initial conditions. Solution by separation of variables. Backward
heat equation. Duhem principle. Variational formulation. Energy inequality. Maximum principle.

Wave equation. Boundary and initial conditions. Solution by separation of variables. D’Alembert
solution. Domain of dependence and domain of influence. Variational formulation. Energy conserva-
tion.

Schrödinger equation. Boundary and initial conditions. Solution by separation of variables. Vari-
ational formulation. Energy conservation.

Wave number and frequency of a harmonic wave. Dissipative and dispersive equations. Comparison
of the qualitative properties of the heat, wave and Schrödinger equations.

Dispersion and Dissipation. A harmonic wave has the form

u(x, t) = exp {i(k · x+ ct)}. (1.1)

Here k ∈ RN is the wave number; c ∈ R, and c/ki is the speed of the wave in the direction of xi.
Inserting a harmonic wave into a linear PDE L(x,D)u = 0, yields L(x, i(k, c)) = 0, which is named a
dispersion relation. This is an algebraic equation relating k and c, and coincides with the vanishing
of the symbol of L. If c depends on k, the equation is said dispersive. If the modulus of the wave is
damped, the equation is said dissipative.

The heat equation is dissipative and not dispersive.
The Schrödinger equation is dispersive and not dissipative.
The wave equation is neither dissipative nor dispersive. [Evans 173]

An Example. Let us set g(t) = exp{−1/t2} for any t > 0. The Tychonov function

u(x, t) :=
∞∑
n=0

g(n)(t)
x2k

(2k)!
∀x ∈ R,∀t > 0 (1.2)

provides a nontrivial solution for the Cauchy problem for the heat equation with homogeneous data.
This function has a high order of growth at infinity, at variance with the solution constructed via the
fundamental solution.

The heat semigroup 1 is continuous in C0
0 (RN ) (space of continuous functions that vanish at

infinity), but not in C0
b (RN ) (space of bounded and continuous functions).

1This is a notion that we have not yet introduced so far...
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2 Characteristics and First-Order PDEs

Classes. (see [ReRo; chap. 2]) Multi-indices. Order of a PDE. Linear PD operators and principal
part. Symbol of a linear PD operator and principal part.

Classification of 2nd-order equations: elliptic, parabolic, hyperbolic. Characteristic (hyper)surfaces
(or curves) for linear PD equations and systems. Cauchy-Kovalevskaya and Olmgren theorems (just
statements). Classification of nonlinear PDEs of any order: semilinear, quasilinear, fully nonlinear
equations.

Examples of linear first-order hyperbolic equations: homogeneous transport equation, transport
equation with linear source, transport equation with known source; traffic equation [Sa; chap. 2].

Explicit solution of some first-order PDE.
Diagonalization of linear systems of first-order hyperbolic equations.

Remark on the Notion of Characteristic. In the literature there is some ambiguity in the use
of the term “characteristic”: in connection with PDEs, one deals with characteristic surface and
characteristic curves.

Characteristic Surfaces. For any linear differential operator

L(x,D) =
∑
|α|≤m

aα(x)Dα (x ∈ RN ), (2.1)

S = {x ∈ RN : ϕ(x) = 0} is called a characteristic surface (more precisely, a manifold of dimension
N − 1, thus a curve if N = 2) iff ϕ ∈ C1(RN ), Dϕ 6= 0 everywhere, and if ϕ solves the following
first-order PDE ∑

|α|=m
aα(x)[Dϕ(x)]α = 0. ∀x ∈ RN . (2.2)

(This is an example of a Hamilton-Jacobi equation).

Characteristic Curves. On the other hand, for first-order operators one often uses the term character-
istic with a different meaning. First notice that (recalling that D = (D1, ..., DN ) and α = (α1, ..., αN ))

(Dϕ)α = Dαϕ ∀α ∈ RN such that |α| = 1. (2.3)

Let us rewrite the principal part Lp of a first-order operator L in the form

Lp(x,D) =
N∑
j=1

aj(x)Dj (x ∈ RN ). (2.4)

A curve of equation x = x̂(s) (s ∈ ]a, b[) is often called a (projected) characteristic curve for this
first-order operator iff

(a1(x̂(s)), ..., aN (x̂(s))) is parallel to x̂′(s) ∀s ∈ ]a, b[. (2.5)

By rescaling the parameter s, we may assume that these two vector functions coincide. (Ahead we shall
also encounter unprojected characteristic curves). Along this characteristic curve the (homogeneous)
PDE is then reduced to

[Lp(x,D)u]x=x̂(s) =
N∑
j=1

x̂′j(s)Dju(x̂(s)) =
d

ds
u(x̂(s)). (2.6)

Therefore

The characteristic curves are the curves along which

any solution of the (homogeneous) first-order PDE is constant.
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Therefore the Cauchy datum propagates along these curves. This provides a technique for constructing
the solution of first-order PDEs, that is called the method of characteristics.

This multiple use of the term “characteristic” may be somehow confusing. However:
— for N = 2 the two notions coincide, and
— for N > 2 any characteristic manifold is a union of (disjoint) characteristic curves.

Integration of First-Order PDEs via the Method of Characteristics.
(a) Quasilinear PDEs. Let

V (x, y, u) = (a(x, y, u), b(x, y, u), c(x, y, u)) be continuous, (2.7)

and u = u(x, y) be a solution (assumed to exist) of the quasilinear PDE

a(x, y, u)ux + b(x, y, u)uy = c(x, y, u) i.e. V · (ux, uy,−1) = 0. (2.8)

As the field n = (ux, uy,−1) is normal to the surface S of equation z = u(x, y), by (2.8) V is parallel
to S. Any integral surface of the field V (namely, a surface that is tangent to the vector field at each
point) is the graph of a solution of (2.8).

Any integral curve (x(t), y(t), z(t)) of the field V is named an (unprojected) characteristic curve;
its projection on to the (x, y)-plane is indeed a projected characteristic curve. Any integral curve
(x(t), y(t), z(t)) fulfills the nonparametric system

dx

a
=
dy

b
=
dz

c
i.e. bdx = ady, cdx = adz, (2.9)

or also, in parametric form,
x′(t) = a, y′(t) = b, z′(t) = c. (2.10)

Any integral surface of the field V is a union of integral curves.
A curve Γ is said noncharacteristic for the vector field V iff it is not tangent to V at any point.

In this case V has a unique integral surface that contains Γ. Provided that a, b, c ∈ C1, any non-
characteristic datum thus defines a unique solution of the Cauchy problem that is determined by the
prescription of the curve Γ.....

This method may easily be extended to equations in more than two independent variables.

(b) Semilinear PDEs. The equation (2.8) is a semilinear PDE if a = a(x, y) and b = b(x, y). In this case
the resolution of the first two characteristic equations (that determine the projected characteristics,
namely, the projection of the characteristics onto the x, y plane) is uncoupled from the third one.

The curve Γ0 = {(f(s), g(s)) : s ∈ R} is not characteristic at any point if

det

(
a(f(s), g(s)) b(f(s), g(s))

f ′(s) g′(s)

)
6= 0 ∀s ∈ R, (2.11)

i.e., f ′(s)b(f(s), g(s)) 6= g′(s)a(f(s), g(s)) for any s ∈ R.

Example 1. Let us consider the semilinear problem

ux + 2uy = u2, u(x, 0) = h(x). (2.12)

Here Γ = {(s, 0, h(s)) : s ∈ R}. The characteristic system reads

x′ = 1, y′ = 2, z′ = z2. (2.13)

Prescribing
x(s, 0) = s, y(s, 0) = 0, z(s, 0) = h(s), (2.14)
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we get the solution of the Cauchy problem (2.13), (2.14) (in which s is a parameter)

x(s, t) = t+ s, y(s, t) = 2t, z(s, t) = h(s)/[1− th(s)]. (2.15)

By (2.12), we may eliminate (t, s), getting

u(x, y) =
h(x− y

2 )

1− y
2h(x− y

2 )
. (2.16)

(The equations (2.13) for x′ and y′ are linear, but that for z′ is not so; this explains the onset of a
singularity in the solution in finite time.)

Example 2. Let us consider the quasilinear problem

uux + yuy = x, u(x, 1) = 2x. (2.17)

Here Γ = {(s, 1, 2s) : s ∈ R}. The characteristic system reads

x′ = z, y′ = y, z′ = x. (2.18)

Prescribing
x(s, 0) = s, y(s, 0) = 1, z(s, 0) = 2s, (2.19)

we get

x(s, t) =
3

2
set − 1

2
se−t, y(s, t) = et, z(s, t) =

3

2
set +

1

2
se−t. (2.20)

As a condition analogous to (2.11) holds, we may eliminate (t, s), getting

u(x, y) = x
3y2 + 1

3y2 − 1
. (2.21)

Lagrange’s Method of “Integrals” of the Equation. If z = u(x, y) solves the equation (2.8),
then, setting ϕ(x, y, z) := u(x, y)− z, we have

a(x, y, z)ϕx + b(x, y, z)ϕy + c(x, y, z)ϕz = 0. (2.22)

Any function ϕ that fulfills the latter equation is named a “first integral” of the equation.
Let ϕi = ϕi(x, y, z) (i = 1, 2) be two integrals, that are mutually independent — that is such that

∇ϕ1 is not parallel to ∇ϕ2 at any points. Let F : R2 → R be any function of class C1 such that
∇F 6= 0 everywhere, and set θ(x, y, z) := F (ϕ1(x, y, z), ϕ2(x, y, z)). Then

a(x, y, z)θx + b(x, y, z)θy + c(x, y, z)θz = 0; (2.23)

the equation
F (ϕ1(x, y, z), ϕ2(x, y, z)) = 0 (2.24)

thus implicitly defines a solution z = u(x, y) of the equation (2.8). In fact, for any (k1, k2) ∈ R2, the
system ϕ1(x, y, z) = k1, ϕ2(x, y, z) = k2 defines a characteristic curve.

Linear System of First-Order PDEs. Let us consider the linear system

ut +A(x, t)·ux = B(x, t)·u+ C(x, t) for (x, t) ∈ R×R+, (2.25)

with u : R×R+ → RN , and with A,B,C known (continuous) matrix-valued functions.
This system is hyperbolic at (x, t) iff A(x, t) has a basis of (real) eigenfunctions;
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it is said strictly hyperbolic at (x, t) iff A(x, t) has N distinct real eigenvalues

λ1(x, t) < ... < λN (x, t) (2.26)

(and then a basis of eigenvectors y1(x, t), ..., yN (x, t)). Let us denote by Λ the matrix whose columns
are these eigenvectors. For any (x, t), (2.25) may then be diagonalized; that is, via the linear trans-
formation RN → RN : u 7→ v = Λ · u (and B 7→ B̃, C 7→ C̃), it may be reduced to a system of N
independent equations:

(vk)t + λk(x, t)(vk)x = B̃(x, t)·vk + C̃(x, t) k = 1, .., N. (2.27)

This corresponds to the following equations for the characteristic curves x = x̂(t):

x̂′k(t) = λk(x̂(t), t) k = 1, .., N. (2.28)

In particular, if A is constant then the λ1, ..., λN are also constant, so that there exist c1, ..., cN ∈ R
such that

x̂k(t) = λkt+ ck k = 1, .., N. (2.29)

If B = C = 0 then B̃ = C̃ = 0, and the solutions v1(x, t), ..., vN (x, t) are then travelling waves:

vk(x, t) = fk(x− λkt) k = 1, .., N. (2.30)

This is easily extended to semilinear equations (i.e., with a second member that is nonlinear in u).

3 Conservation Laws

Classes. (see [ReRo; chap. 3]) Examples of nonlinear first-order hyperbolic equations and systems.
Characteristics. Bases of left and right eigenvectors for the matrix of systems of conservation laws.
Riemann invariants.

Cauchy problem for a single conservation law. Determination of the strong solution via the method
of characteristics. Possible failure in finite time. Weak formulation and Rankine-Hugoniot condition.
Rarefaction wave and shocks waves. Lax entropy condition. Physical and nonphysical shocks. Rie-
mann problem.

Entropy and entropy-flux pairs; entropy criterion. “Entropy-jump condition”. Viscosity solutions.
Traffic equation. Wave velocity. Rarefaction wave at a traffic light. Car crash. (see [Salsa; chap.

4])

Conservation Laws. Let us consider a system of conservation laws of the form

Dtu+DxF (u) = 0 in R×R+, (3.1)

that is, ∑
jδijDtuj +

∑
jDujFi(u)Dxuj = 0 in R×R+, for i = 1, .., N, (3.2)

with u : R2 → RM , F : RM → RM . Let us set A(u) = ∇F (u) for any u ∈ RM . Let Γ = {(x, t) :
ϕ(x, t) = 0}, with ϕ ∈ C1(D) such that ∇ϕ 6= 0 everywhere; this curve is characteristic iff

Det[IDtϕ(x, t) +A(u(x, t))·Dxϕ(x, t)] = 0 ∀(x, t) ∈ Γ. (3.3)

If in a neighbourhood of some point Γ may be represented parametrically as ]a, b[→ R : t 7→ (x̂(t), t),
then we may take ϕ(x, t) = x̂(t)− x. (3.3) then yields

Det[Ix̂′(t)−A(u(x̂(t), t))] = 0 ∀t ∈ ]a, b[. (3.4)
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The system (3.3) is said hyperbolic at some u ∈ D iff the matrix A(u) has a basis of eigenvectors,
and strictly hyperbolic iff it has N distinct real eigenvalues: λ1(u) < ... < λN (u). Each of these
eigenvalues is associated to a left and a right eigenvector: `k(u), rk(u) for k = 1, ..., N . (Notice that
`k(u) is orthogonal to rh(u) if k 6= h.)

If the system is hyperbolic at all points, then A(u) may be diagonalized, so that (3.1) is reduced
to N uncoupled equations. This yields N characteristic curves (x̂k(t), t), such that

x̂′k(t) = λk(u(x̂k(t), t)) ∀t ∈ ]a, b[ (k = 1, ..., N). (3.5)

Riemann Invariants. For any k ∈ {1, ...,M}, a smooth function w : D → R is said a k-Riemann
invariant iff

rk(u)·∇w(u) = 0 ∀u ∈ RM . (3.6)

If u is a solution of class C1 of the system (3.1), then a k-Riemann invariant (k ∈ {1, ..., N})
is constant along the characteristic curve of equation (x̂k(t), t), namely the curve that fulfills (3.5)
for the same k. This entails that, if a system has N Riemann invariants whose gradients are linearly
independent, then it may be diagonalized. This hypothesis is fulfilled by all strictly hyperbolic systems
of two conservation laws, but not by more general systems.

On the Derivation of the Rankine-Hugoniot Condition. [Salsa] Let us consider the single
scalar conservation law

Dtu+Dxf(u) = 0 in R×R+, (3.7)

with f ∈ C2(R2) and (e.g.) f ′′(u) > 0 for any u. Let u be a solution, and x = x̂k(t) represent a shock,
namely a regular curve along which u has a jump; let us assume that u ∈ C1 outside the shock curve.
Let us fix any t ∈ ]a, b[, assume that x1 < x̂k(t) < x2, and integrate (3.7) in ]x1, x2[. This yields

Dt

∫ x2

x1
u dx+ f(u(x2, t))− f(u(x1, t)) = 0. (3.8)

(This is formally equivalent to (3.7), but it may be written also if u is just continuous.) Notice that

Dt
∫ x2
x1
u dx = Dt

∫ x̂(t)
x1

u dx+Dt
∫ x2
x̂(t) u dx

=
∫ x̂(t)
x1

Dtu dx+
∫ x2
x̂(t)Dtu dx+ x̂′(t)u(x̂(t)− 0, t)− x̂′(t)u(x̂(t) + 0, t),

(3.9)

so that (3.7) also reads

∫ x̂(t)
x1

Dtu dx+
∫ x2
x̂(t)Dtu dx+ x̂′(t)u(x̂(t)− 0, t)− x̂′(t)u(x̂(t) + 0, t)

+f(u(x2, t))− f(u(x1, t)) = 0.
(3.10)

Passing to the limit as x1 → x̂(t)− 0 and x2 → x̂(t) + 0, we get

x̂′(t)[u(x̂(t)− 0, t)− u(x̂(t) + 0, t)] + f(u(x̂(t) + 0, t))− f(u(x̂(t)− 0, t)) = 0, (3.11)

that is, the Rankine-Hugoniot condition:

x̂′(t) = [[f(u)]]/[[u]] ([[u]] := jump of u across the shock curve). (3.12)
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4 Maximum Principle

Classes. (see [ReRo; chap. 4]) Linear elliptic operators of the second order in nondivergence and
divergence forms. Weak maximum principle for linear elliptic operators in non-divergence form. Hopf’s
strong maximum principle. Maximum principle for linear parabolic operators of the second order in
non-divergence form.

Integral formulation of linear elliptic and parabolic operators of the second order in divergence
form, and derivation of the maximum principle.

Weak Maximum Principle for Elliptic Operators. Let Ω be a bounded Euclidean domain and
x0 ∈ ∂Ω be such that there exists a ball contained in Ω̄ that is tangent to ∂Ω at x0. Let us define two
linear elliptic operators of the second order (in non-divergence form):

L0u := aij(x)DiDju+ bi(x)Diu, Lu := L0u+ c(x)u

with aij , bi, c ∈ C0(Ω) ∀i, j, and A = {aij} everywhere positive definite.
(4.1)

(For instance, L0 = ∆, Lu := ∆ + cI.) We shall denote by ν the outward-oriented unit normal
vector field on ∂Ω, and by ∂u(x0)/∂ν the corresponding normal derivative. We shall assume that
u ∈ C2(Ω) ∩ C0(Ω̄).

The weak maximum principle states that

−L0u ≤ 0 in Ω ⇒ max
Ω̄

u ≤ max
∂Ω

u; (4.2)

this entails that
−Lu ≤ 0, c ≤ 0 in Ω ⇒ max

Ω̄
u ≤ max

∂Ω
u+. (4.3)

Let f ∈ C0(Ω) and g ∈ C0(∂Ω) be prescribed, and consider the boundary value problem

−Lu = f in Ω, u = g on ∂Ω. (4.4)

(This is a nonhomogeneous Dirichlet problem.) Still assuming that c ≤ 0 in Ω, (4.3) entails the
monotone dependence on the data:

−Lu1 ≤ −Lu2 in Ω

u1 ≤ u1 on ∂Ω
⇒ u1 ≤ u2 in Ω. (4.5)

In turn this yields the uniqueness of the solution.

A Remark of the Strong Maximum Principle. If u ≤ u(x0) in a neighborhood of x0, then it is
clear that ∂u(x0)/∂ν ≥ 0. Let U be a neighborhood of x0. E. Hopf proved that

u(x) < u(x0), −L0u(x) ≤ 0 ∀x ∈ U ∩ Ω ⇒ ∂u(x0)/∂ν > 0. (4.6)

(For N = 1 and L0 = D2 this is clearly seen.)
We remark that if c ≤ 0 in U and u(x0) > 0, then, possibly restricting the neighborhood U of x0,

cu ≤ 0 in U . Therefore
−L0u := −Lu+ cu ≤ −Lu in U ∩ Ω. (4.7)

By (??) we then conclude that

u(x0) > 0, u(x) ≤ u(x0), c(x) ≤ 0, −Lu(x) ≤ 0 ∀x ∈ U ∩ Ω

⇒ ∂u(x0)/∂ν > 0.
(4.8)

(4.6) and (4.8) respectively provide the strong maximum principle in the following reduced forms:
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(a) If u ∈ C2(Ω) ∩ C0(Ω̄) is not constant and −L0u ≤ 0 in Ω, then u cannot attain its maximum
in Ω.

(b) If u ∈ C2(Ω)∩C0(Ω̄) is not constant, c ≤ 0 and −Lu ≤ 0 in Ω, then u cannot attain a positive
maximum in Ω.

Weak Maximum Principle for Parabolic Operators. Let L0 and L be as above, with x ∈ Ω
replaced by (x, t) ∈ Ω×]0, T [; let us fix any T > 0, and set

L0 := L0 −Dt, L := L−Dt in Q := Ω×]0, T [. (4.9)

Let us also set Σ := (∂Ω)×]0, T ], and define the parabolic boundary ∂pQ := (Ω×{0}) ∪ Σ.
The weak maximum principle states that

−L0u ≤ 0 in Q ⇒ max
Q̄

u ≤ max
∂pQ

u; (4.10)

this entails that
−Lu ≤ 0, c ≤ 0 in Q ⇒ max

Q̄
u ≤ max

∂pQ
u+. (4.11)

Let f ∈ C0(Q), u0 ∈ C0(Ω) and g ∈ C0(∂pQ) be prescribed, and consider the initial-boundary
value problem

−Lu = f in Q, u = u0 on Ω×{0}, u = g on Σ. (4.12)

(This is a nonhomogeneous Cauchy-Dirichlet problem.) Still assuming that c ≤ 0 in Ω, (4.11) entails
the monotone dependence on the data:

−Lu1 ≤ −Lu2 in Q

u0
1 ≤ u0

2 in Ω

u1 ≤ u1 on Σ

⇒ u1 ≤ u2 in Q. (4.13)

In turn this yields the uniqueness of the solution.

A maximum principle may also be derived for parabolic equations. In this case one concludes that
if u attains its maximum at some (x0, t0) 6∈ ∂pQ, then u(x, t) = u(x0, t0) for any (x, t) ∈ Ω×[0, t0].

By applying the weak/strong maximum principle to −u, analogous weak/strong minimum princi-
ples are easily derived, in both the elliptic and parabolic cases.
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