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Laplace transform
Nota: Una trattazione elementare ma più ampia della transformazione di Laplace è offerta ad

esempio dal primo capitolo di

M. Marini: Metodi matematici per lo studio delle reti elettriche. C.E.D.A.M., Padova, 1999.

La seguente trattazione è basata in parte sul testo

G. Gilardi: Analisi tre. McGraw-Hill, Milano 1994.

This chapter includes the following sections:

1. Laplace transform of functions

2. Further Properties of the Laplace Transform

3. Laplace Transform of Distributions

4. Laplace Transform and Differential Equations

1 Laplace Transform of Functions

This transform is strictly related to that of Fourier, and like the latter it allows one to transform
ODEs to algebraic equations. But the Laplace transform is especially suited for the study of initial
value problems, whereas the Fourier transform is appropriate for problems on the whole real line. In
applications the theory of Laplace transform is also called symbolic or operational calculus.

From Fourier to Laplace transform. Let us first present some informal remarks. Let us denote
by û the Fourier transform of a transformable function u : R→ C:

û(ξ) :=
1√
2π

∫
R
u(t)e−iξt dt for ξ ∈ R. (1.1)

The inversion formula is one of the main elements of interest of this transform:

u(t) :=
1√
2π

∫
R
û(ξ)eiξt dξ for t ∈ R. (1.2)

This represents u as an (integral) average of the periodic functions wξ : R→ C : t 7→ eiξt parameterized
by ξ ∈ R and with weight û(ξ). Each of the functions wξ is called a harmonic with frequency ξ, 1 as
w = wξ solves the equation of harmonic motion: 2

w′′(t) + ξ2w(t) = 0 for t ∈ R. (1.3)

Because of the classical method of variation of the constants, the solutions of this equation can be
used for the study of the nonhomogeneous equation w′′(t) + ξ2w(t) = f(t) for t ∈ R, for a prescribed
function f . (More specifically, one may look for a solution of the form w = zwξ, with wξ solution of
(1.3) and z = z(t) to be determined. By replacing this expression in (1.3), we get the new equation
z′′w + 2z′w′ = f , which is easily integrated.)

1 ξ represents the angular frequency, (also named pulsation), namely the ratio radians/time. Therefore ξ/(2π) is the
frequency, namely the ratio cycles/time.

2 Despite of (1.3), the functions wξ cannot be regarded as eigenfunctions of the second derivative in either L1 or L2,
since they are not elements of either space.



2 Fourier Analysis, a.a. 2014-15 – A. Visintin

As |wξ(t)| ≤ 1 for any ξ, t ∈ R, the Fourier integral (1.2) converges for any u ∈ L1. Anyway we
have seen that one may also assume u ∈ L2, provided that the Fourier integral is understood in the
sense of the principal value of Cauchy; and the domain of this transform can be further extended.

For any η ∈ R, let us also consider another equation of great interest:

w′(t) + ηw(t) = 0 for t ∈ R. (1.4)

The solutions of this equation are proportional to wη : R → R : t 7→ e−ηt; if η 6= 0, this function
diverges exponentially as t→ +∞ or t→ −∞, depending on the sign of η. Analogously to (1.3), the
classical method of variation of the constants allows one to construct a solution for the nonhomogeneous
equations w′(t) + ηw(t) = f(t). 3

In analogy with (1.1)), for the study of the equation w′(t) + ηw(t) = f(t) first we set

ũ(η) :=

∫
R
u(t)e−ηt dt for η ∈ R. (1.5)

For any η > 0 (η < 0, respect.) this integral converges only if |u(t)| exponentially decays to 0 as
t → −∞ (as t → +∞, respect.). Anyway in many cases of applicative interest the equation (1.4) is
not set on the whole R, but just on R+; in those cases it is convenient to restrict oneself to functions
that vanish for any t < 0. 4

More generally, we can replace the real variable η by a complex variable s, since |e−st| = e−Re(s)t

for any t ∈ R (time remains real!). We can then consider the kernels R→ C : t 7→ e−st, parameterized
by s ∈ C. For imaginary s we retrieve periodic functions, whereas for real s these functions either
grow or decay exponentially. 5 Let us then define the Laplace transform

u 7→ ũ(s) :=

∫
R
u(t)e−st dt for s ∈ C, (1.6)

which includes (1.5) for s real and the Fourier transform for s imaginary (the conventional factor
1/
√

2π apart). Concerning the convergence of this integral, what we said for (1.5) holds here also, and
we shall confine ourselves to causal signals.

Setting s = x+ iy, we thus have

Ux(y) := ũ(x+ iy) =

∫
R
u(t)e−xte−iyt dt for x, y ∈ R. (1.7)

The variable s is often referred to as a (complex) frequency, although just its imaginary part really
represents a frequency, cf. (1.2). As Ux is the Fourier transform of the function t 7→

√
2π u(t)e−xt,

(1.6) may be regarded as the Fourier transform of an array of inputs parameterized by x ∈ R.

The right side of (1.7) has a meaning whenever e−xtu(t) ∈ L1; if u is causal, the larger is x the
less restrictive is this condition. This allows one to apply this formulation to the Laplace transform
of a wide family of causal functions of L1

loc.
6

3 Just as above, despite of (1.4), the functions wη cannot be regarded as eigenfunctions of the first derivative in either
L1 or L2, since they are not elements of either space.

4 These are called causal signals in signal analysis. We shall occasionally refer to the terminology of this field of
engineering.

5 The functions ũ(η) cannot be regarded as eigenfunctions of the first derivative in S ′, since they do not belong to
that space.

6 There is thus little interest to extend this transform to L2.
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Functional set-up. The Laplace transform deals with functions of a single real variable, which
typically represents time and is denoted by t. On the basis of the previous remarks, let us define the
class DL of the transformable functions, and for any u ∈ DL the abscissa of (absolute) convergence
λ(u), the convergence half-plane Cλ(u), and finally the Laplace transform L(u): 7

DL :=
{
u ∈ L1

loc : u(t) = 0 q∀t < 0, ∃x ∈ R : e−xtu(t) ∈ L1
t

}
, (1.8)

λ(u) := inf
{
x ∈ R : e−xtu(t) ∈ L1

t

}
(∈ [−∞,+∞[) ∀u ∈ DL, (1.9)

Cλ(u) := {s ∈ C : Re(s) > λ(u)} ∀u ∈ DL, (1.10)

[L(u)](s) :=

∫
R
e−stu(t) dt ∀s ∈ Cλ(u), ∀u ∈ DL. (1.11)

The transformed function L(u) is also called the Laplace integral. DL is the set of locally integrable
causal signals that have at most exponential growth. This is a linear space, and the Laplace transform
is obviously linear: for any u, v ∈ DL ed ogni µ1, µ2 ∈ C,

λ(µ1u+ µ2v) = max{λ(u), λ(v)}, L(µ1u+ µ2v) = µ1L(u) + µ2L(v). (1.12)

The Lebesgue integral (1.11) converges for any s ∈ Cλ(u). For some functions this integral may
converge also for some complex s with Re(s) = λ(u). But the Laplace transformed function L(u) is
defined just in Cλ(u), since some properties might fail if Re(s) ≤ λ(u).

Although we called Cλ(u) the convergence half-plane, w We do not exclude Cλ(u) = C (which we
still call the convergence half-plane). Indeed λ(u) = −∞ if the transformable functions decays more
than exponentially; in particular this occurs for any compactly supported function of DL. On the
other hand, we exclude Cλ(u) = ∅, i.e. λ(u) = +∞.

In the definition of the elements of DL we shall often encounter the Heaviside function H (also
called unit step):

H(t) := 0 ∀t ≤ 0, H(t) := 1 ∀t > 0.

The occurrence of the factor H(t) will guarantee causality. For instance, it is easily checked that

H(t) ∈ DL, λ(H) = 0,

tαH(t) ∈ DL, λ(tαH(t)) = 0 ⇔ Re(α) > −1;
(1.13)

e−t
2
H(t) ∈ DL, λ(e−t

2
H(t)) = −∞; et

2
H(t), t−1H(t) 6∈ DL. (1.14)

The next result relates the Fourier and Laplace transforms.

Theorem 1.1. For any u ∈ DL,

[L(u)](x+ iy) =
√

2π
[
F(e−xtu(t))

]
(y) ∀y ∈ R,∀x > λ(u). (1.15)

7 We write L1
t in order to make clear that t is the integration variable.

Here we speak of abscissa of absolute convergence since the Lebesgue integral is absolutely convergent. Some authors
define the Laplace transform as an improper integral, rather than as a Lebesgue integral. Accordingly, they do not
prescribe absolute convergence; this has some analogy with what we shall do ahead extending the Laplace transform to
distributions. This has some consequences on some properties of the transform.

What we introduced is called the unilateral Laplace transform, as the domain of convergence is a half-plane. In
literature a bilateral Laplace transform is also defined: in this case u need not be causal. The domain of convergence is
then a strip of the form {s ∈ C : λ1(u) < Re(s) < λ2(u)}, with −∞ ≤ λ1(u) < λ2(u) ≤ +∞. This bilateral transform is
much less used than the unilateral one.
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Vice versa, u ∈ DL and λ(u) ≤ 0 for any causal u ∈ L1. If u ∈ L1 and λ(u) < 0 then 8

[F(u)](y) =
1√
2π

[L(u)](iy) ∀y ∈ R. (1.16)

By the foregoing result, several properties of the Fourier transform are easily extended to the
Laplace transform. This also applies to the next statement.

Proposition 1.2. For any u ∈ DL,

v(t) = u(t− t0) ⇒ λ(v) = λ(u), ṽ(s) = e−t0s ũ(s) ∀t0 > 0, (1.17)

v(t) = es0tu(t) ⇒ λ(v) = λ(u) + Re(s0), ṽ(s) = ũ(s− s0) ∀s0 ∈ C, (1.18)

v(t) = u(ωt) ⇒ λ(v) = ωλ(u), ṽ(s) = 1
ω ũ
(
s
ω

)
∀ω > 0. (1.19)

The assertions about convergence abscissas are easily checked: the delay does not modify the
behaviour of the function for t→ +∞; the exponential factor es0t instead entails a translation of the
convergence abscissa.

Examples. For any u ∈ DL,

u(t) = H(t) ⇒ λ(u) = 0, ũ(s) =
1

s
, (1.20)

u(t) = eγtH(t) (γ ∈ C) ⇒ λ(u) = Re(γ), ũ(s) =
1

s− γ
, (1.21)

u(t) = cos(ωt)H(t) (ω ∈ R) ⇒ λ(u) = 0, ũ(s) =
s

s2 + ω2
, (1.22)

u(t) = sin(ωt)H(t) (ω ∈ R) ⇒ λ(u) = 0, ũ(s) =
w

s2 + ω2
, (1.23)

u(t) = cosh(ωt)H(t) (ω ∈ R) ⇒ λ(u) = |ω|, ũ(s) =
s

s2 − ω2
, (1.24)

u(t) = sinh(ωt)H(t) (ω ∈ R) ⇒ λ(u) = |ω|, ũ(s) =
w

s2 − ω2
, (1.25)

u(t) = tkH(t) (k ∈ N) ⇒ λ(u) = 0, ũ(s) =
k!

sk+1
. (1.26)

The reader is asked to check these properties.
The final formula is generalized by

u(t) = taH(t) (a > −1) ⇒ λ(u) = 0, ũ(s) =
Γ(a+ 1)

sa+1
, (1.27)

since, by definition of the classical Euler function Γ,

ũ(s) =

∫ +∞

0
e−stta dt =

1

sa+1

∫ +∞

0
e−yya dy =:

Γ(a+ 1)

sa+1
∀s ∈ Cλ(u) = C0.)

Incidentally, notice that 1/s is definite for any complex s 6= 0, but H̃(s) = 1/s only if Re(s) >
λ(H) = 0.

8 For λ(u) = 0 there is a formal inconvenience: if y ∈ R, [F(u)](y) obviously exists as u ∈ L1; but, as we saw, in this
case it is not legitimate to write [L(u)](iy).



Laplace transform 5

The Laplace transform operates on periodic functions in a different way from the Fourier transform,
as it is shown by the next result. Notice that, because of causality, here u is assumed to be the
restriction of a periodic function only for positive time.

Theorem 1.3. (Periodic Functions) For any T > 0, let u ∈ DL, u 6≡ 0 be such that u(t+ T ) = u(t)
for any t > 0. Then λ(u) = 0 and, setting

w(t) := u(t) ∀t ∈ [0, T ], w(t) := 0 ∀t ∈ R \ [0, T ], (1.28)

we have

ũ(s) =
1

1− e−sT
w̃(s) ∀s ∈ C0. (1.29)

Notice that 1 − e−sT 6= 0 for any s ∈ C0, and that the hypotheses entail that u ∈ L1(0, T ), but
not u ∈ L∞(0, T ).

Proof. For any x > 0, changing the integration variable, using the periodicity and setting C :=∫ T
0 |w(τ)| dτ ( 6= 0 as u 6≡ 0), we have∫

R
e−xt|u(t)| dt =

∞∑
n=0

∫ (n+1)T

nT
e−xt|u(t)| dt =

∞∑
n=0

e−nTx
∫ T

0
e−xτ |w(τ)| dτ

(as e−xτ ≤ 1) ≤
∞∑
n=0

e−nTx
∫ T

0
|w(τ)| dτ = C

∞∑
n=0

e−nTx < +∞.

(1.30)

On the other hand, for any x < 0,∫
R
e−xt|u(t)| dt =

∞∑
n=0

∫ (n+1)T

nT
e−xt|u(t)| dt =

∞∑
n=0

e−nTx
∫ T

0
e−xτ |w(τ)| dτ

(as e−xτ ≥ 1) ≥
∞∑
n=0

e−nTx
∫ T

0
|w(t)| dt = C

∞∑
n=0

e−nTx = +∞.

(1.31)

It follows that λ(u) = 0. 9 Setting uT (t) := u(t− T ) for any t ∈ R and noticing that w = u− uT , we
have

w̃(s) = ũ(s)− ũT (s) = ũ(s)− e−sT ũ(s)
(1.17)

= (1− e−sT )ũ(s) ∀s ∈ Cλ(u),

that is (1.29). tu

Theorem 1.4. (Convolution Theorem) For any u, v ∈ DL, u ∗ v ∈ DL and

λ(u ∗ v) ≤ max{λ(u), λ(v)}, L(u ∗ v) = L(u) L(v). (1.32)

More generally, for any integer N ≥ 2 and for any u1, ..., uN ∈ DL, we have u1 ∗ ... ∗ uN ∈ DL and

λ(u1 ∗ ... ∗ uN ) ≤ max{λ(ui) : i = 1, ..., N}, L(u1 ∗ ... ∗ uN ) =
N∏
i=1

L(ui). (1.33)

9 More synthetically, one may notice that, as u is periodic and integrable in any interval of the form ]nT, (n+ 1)T [,
e−xtu(t) ∈ L1 for all x > 0 and for no x < 0. Therefore λ(u) = 0.



6 Fourier Analysis, a.a. 2014-15 – A. Visintin

The inequality (1.32) may be strict: e.g. consider u ≡ 0 and any v ∈ DL.
The proof of (1.32) mimics that of the Fourier transform of the convolution, and is left to the

reader. (1.33) follows from (1.32) by recurrence.

Corollary 1.5. For any u ∈ DL, U(t) =
∫ t

0 u(τ) dτ ∈ DL and

λ(U) ≤ max{λ(u), 0}, [L(U)](s) = [L(u)](s)/s if Re(s) > max {λ(u), 0}. (1.34)

Proof. As u is causal,
∫ t

0 u(τ) dτ =
∫ t
−∞ u(τ) dτ = (u ∗H)(t) for any t > 0. It then suffices to apply

the convolution theorem. tu

Theorem 1.6. (Holomorphy) For any u ∈ DL,

the function ũ is holomorphic in Cλ(u), (1.35)

∀λ > λ(u), the function ũ is bounded in the half-plane {s ∈ C : Re(s) ≥ λ}, (1.36)

sup
Im(s)∈R

ũ(s)→ 0 for Re(s)→ +∞. (1.37)

Proof. The proof of holomorphism is analogous to that we saw for the Fourier transform, and is left
to the reader. (One may actually differentiate w.r.t. s under the integral.) (1.36) holds true as

|ũ(s)| ≤
∫
R
e−tλ|u(t)| dt ∀λ ∈ ]λ(u),Re(s)[. (1.38)

By passing to the limit as Re(s) → +∞ in this inequality via the dominated convergence theorem,
(1.37) follows. tu

Incidentally, notice that the transformed function ũ need not be bounded at the interior of the
whole half-plane Cλ(u). The transform H̃(s) = 1/s is a counterexample.

Remarks. (i) If the Laplace integral absolutely converges for some s ∈ C, then the same occurs for
s+iy for any y ∈ R. Therefore the set of absolute convergence is either of the form {s ∈ C : Re(s) > a}
or {s ∈ C : Re(s) ≥ a} for some a ∈ ]−∞,+∞[ (or it is the whole C).

(ii) In some cases ũ may be extended to a holomorphic function defined on a larger domain than
Cλ(u). For instance, the transform H̃(s) (= 1/s) of the Heaviside function H is only defined for
Re(s) > λ(H) = 0, although the function s 7→ 1/s is holomorphic in C \ {0}.

(iii) The theorem of holomorphism is one of the main differences between the properties of the
Laplace and Fourier transforms, as in general Fourier transformed functions need not be holomorphic.

For instance, the function w : R→ C : ξ 7→ (1 + ξ2)−2 is an element of L2, hence it is the Fourier
transform of some function u ∈ L2. However, w has no holomorphic continuation to the whole C, as
(1 + s2)−2 is not defined for s = ±i.

(iv) In several cases the theorem of holomorphism allows one to perform a computation for real s,
and then to extend the result to the convergence half-plane. tu

2 Further Properties of the Laplace Transform

For the differentiation of the original function and of its Laplace transform, we have analogous rules
to those we saw for the Fourier transform. In one of these formulas the initial value of the function
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u occurs. 10 We remind the reader that for any function v = v(t), by Dv we denote the derivative
in the sense of distributions (which exists for any v), and by v′ the derivative almost everywhere (if
existing).

Proposition 2.1. (Laplace transform and a.e. differentiation) (i) For any u ∈ DL,

tu(t) ∈ DL, λ(tu(t)) = λ(u),

[L(u)]′(s) = −[L(tu(t))](s) ∀s ∈ Cλ(u).
(2.1)

More generally, for any n ∈ N,

tnu(t) ∈ DL, λ(tnu(t)) = λ(u),

[L(u)](n)(s) = (−1)n[L(tnu(t))](s) ∀s ∈ Cλ(u).
(2.2)

(ii) For any u ∈ DL that is absolutely continuous in ]0,+∞[, if u′ ∈ DL and if there exists

u(0+) := lim
t→0+

u(t) ∈ C,

then
[L(u′)](s) = s[L(u)](s)− u(0+) ∀s ∈ Cλ(u) ∩Cλ(u′). (2.3)

Proof. As we saw, multiplication by t does not modify the convergence abscissa of u. The proof of
the formula L(u)′ = −L(tu(t)) (the derivative of a holomorphic function) is straightforward.

Let us next check (2.3). As e−stu(t) ∈ L1
t whenever Re(s) > λ(u), there exists a diverging sequence

{tn} such that e−stnu(tn)→ 0 as n→ +∞. By partial integration we then get

[L(u′)](s) =

∫ +∞

0
e−stu′(t) dt = lim

n→∞

∫ tn

0
e−stu′(t) dt

= lim
n→∞

{∫ tn

0
se−stu(t) dt+ e−stnu(tn)

}
− u(0+)

= s

∫ +∞

0
e−stu(t) dt− u(0+) ∀s ∈ Cλ(u) ∩Cλ(u′). tu

(2.4)

Remarks. (i) If u ∈ DL is absolutely continuous in ]0,+∞[, let us denote by u′ the causal function
that coincides with the ordinary derivative in ]0,+∞[. This does not entail u′ ∈ DL. For instance
u1(t) = t−1/2H(t) and u2(t) = [sin exp(t2)]H(t) are both elements of DL, but u′i 6∈ DL for i = 1, 2.

(ii) In part (ii) of the latter theorem, the hypothesis u′ ∈ DL cannot be dropped. Indeed the a.e.
differentiability of u alone does not entail (2.3), as u might have a jump at some t > 0. As we know,
these discontinuities entail the occurrence of Dirac masses in Du.

The formula (2.3) is easily extended to higher-order derivatives.

Proposition 2.2. Let u ∈ DL be such that u, u′, ..., u(m−1) are absolutely continuous in ]0,+∞[ for
an integer m > 1. If u′, ..., u(m) ∈ DL and if the limits u(0+), ..., u(m−1)(0+) exist in C, then

[L(u(m))](s) = sm[L(u)](s)−
m−1∑
n=0

sm−n−1u(n)(0+) ∀s ∈ Cλ(u) ∩ ... ∩Cλ(u(m)). (2.5)

10 When dealing with the Laplace transform of distributions we shall illustrate this issue.
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Proof. For instance, for m = 2 by applying Proposition 2.1 first to u′ and then to u, we get

[L(u′′)](s) = s[L(u′)](s)− u′(0+) = s2[L(u)](s)− su(0+)− u′(0+)

for any s ∈ Cλ(u) ∩Cλ(u′) ∩Cλ(u′′). The equality (2.5) is easily proved by recurrence. tu

Proposition 2.3. (Laplace transform and integration) If u, u(t)/t ∈ DL then λ(u(t)/t) = λ(u) and
11

[L(u(t)/t)](s) = lim
R3σ→+∞

∫ σ

s
[L(u)](r) dr ∀s ∈ Cλ(u). (2.6)

This limit coincides with the generalized integral of L(u) between s and +∞ (here +∞ is the
limit of (x, 0) as x → +∞...); this integral does not depend on the integration path, because L(u) is
holomorphic. Anyway it need not converge absolutely, hence it may not be representable as a Lebesgue
integral. 12

Proof. As
∫ t

0 u(τ)dτ = (u∗H)(t), the convolution theorem yields[
L
(∫ t

0
u(τ)dτ

)]
(s) = ũ(s)H̃(s) =

ũ(s)

s
if Re(s) > max {λ(u), 0}.

On the other hand, if u, u(t)/t ∈ DL then by applying the differentiation theorem to v(t) := u(t)/t
we have

λ(u(t)/t) = λ(u), L(v)′ = −L(tv(t)) = −L(u),

whence by integration

ṽ(s) = ṽ(σ) +

∫ σ

s
[L(u)](r) dr ∀s ∈ Cλ(u), ∀σ > λ(u).

Passing to the limit as σ → +∞ and recalling (1.37), we get (2.6). tu

The next theorem is an example of the so-called Tauberian theorems. These results provide infor-
mation on the original function u on the basis of the transformed function ũ, without inverting the
Laplace transformation.

Theorem 2.4. *(of final and initial values) For any u ∈ DL, 13

∃u(+∞) ∈ C ⇒ λ(u) ≤ 0, sũ(s)→ u(+∞) as s→ 0, (2.7)

∃u(0+) ∈ C ⇒ supIm(s)∈R |sũ(s)− u(0+)| → 0 as Re(s)→ +∞. (2.8)

If λ(u) = 0 then in (2.7) it is understood that s → 0 from the half-plane of complex numbers
with positive real part. The convergence in (2.8) is tantamount to the following: as Re(s) → +∞,
sũ(s)→ u(0+) uniformly w.r.t. Im(s).

* Proof. In order to simplify the argument, for both statements we shall assume that

u is absolutely continuous in ]0,+∞[, u′ ∈ DL, ∃u(+∞), ∃u(0+). (2.9)

11 Here we mean that σ is real; anyway, because of the holomorphism of L(u), this limit may also be taken as σ varies
along a complex path in Cλ(u).

12 In formula (2.6) we do not write
∫ +∞
s

[L(u)](τ) dτ , as we reserve the integral notation to the Lebesgue integral.
13 We set u(+∞) := limt→+∞ u(t) whenever this limit exists (in C).
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As the function u is continuous and converges as t → 0 and t → +∞, u is bounded and thus
λ(u) ≤ 0. Because of the dominated convergence theorem, we have∫ +∞

0
u′(t) dt = lim

s→0

∫ +∞

0
e−stu′(t) dt = lim

s→0
[L(u′)](s)

(2.3)
= lim

s→0
sũ(s)− u(0+). (2.10)

On the other hand∫ +∞

0
u′(τ) dτ = lim

t→+∞

∫ t

0
u′(τ) dτ = lim

t→+∞
u(t)− u(0+) = u(+∞)− u(0+), (2.11)

and by comparing these two identities we get (2.7).
Similarly, we have

lim
Re(s)→+∞

sũ(s)− u(0+)
(2.3)
= lim

Re(s)→+∞
[L(u′)](s)

(1.37)
= 0, (2.12)

and this limit is uniform respect to Im(s). (2.8) is thus proved. tu

Remarks. (i) The final-value theorem cannot be inverted: the existence of lims→0 sũ(s) in C does
not entail that of u(+∞). For instance u(t) = (sin t)H(t) does not converge as t → +∞, although
sũ(s) = s/(s2 + 1)→ 0 as s→ 0.

(ii) The initial-value theorem also cannot be inverted: the existence of limRe(s)→+∞ sũ(s) in C
(uniformly w.r.t. Im(s)) does not entail that of u(0+). We omit the counterexample, which is less
simple than the previous one.

Inversion of the Laplace transform. The following theorem provides an explicit formula for the
antitransform. This is derived by reducing the Laplace transform to the Fourier transform, see (1.16).

Let us first say that a function u ∈ DL is of exponential order if

∃α ∈ R,∃M > 0 : |u(t)| ≤Meαt for a.e. t > 0. (2.13)

This class includes most of the functions that occur in applications. Not all elements of DL are
of exponential order, but any nondecreasing u ∈ DL has this property. [Ex] For any u ∈ DL of
exponential order, λ(u) is the infimum of the α ∈ R that fulfill (2.13).

Theorem 2.5. (Riemann-Fourier) If u ∈ DL is of exponential order, then, denoting by ũ its Laplace
transform,

u(t) =
1

2πi
P.V.

∫
x+iR

estũ(s) ds

(
=

1

2π
lim

R→+∞

∫ R

−R
e(x+iy)tũ(x+ iy) dy

)
q∀t ∈ R,∀x > λ(u).

(2.14)

Proof. Let us select any x > λ(u) and set

ϕx(y) := ũ(x+ iy) =

∫
R
e−(x+iy)tu(t) dt ∀y ∈ R,

that is, ϕx(y) =
√

2π[F(e−xtu(t))](y). By (2.13), λ(u) ≤ α; as x > λ(u), then

∃α ∈ ]λ(u), x[: Mα := ess sup
t>0

{e−αt|u(t)|} < +∞; [Ex]
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hence
|e−(x+iy)tu(t)| = |e−xtu(t)| = |e−αtu(t)|e(α−x)t ≤Mαe

(α−x)t ∈ L2.

The Fourier transform F(e−xtu(t)) may thus be understood not only in the sense of L1 (i.e., as a
Lebesgue integral) but also in the sense of L2, thus as a principal value. The theorem of inversion of
the Fourier transform in L2 then yields

e−xtu(t) =
1√
2π

[
F−1(ϕx)

]
(t) =

1

2π
P.V.

∫
R
eityϕx(y)dy q∀t ∈ R,∀x > λ(u), (2.15)

that is, (2.14). tu

An exercise in complex calculus. Next we directly check that the principal value occurring in
(2.14) does not depend on x > λ(u). Here we assume that

∃ C, a > 0 : ∀s ∈ Cλ(u) |ũ(s)| ≤ C|s|−a, (2.16)

although, because of the previous argument, this additional hypothesis is not really needed.
For any x1, x2 with λ(u) < x1 < x2, because of Proposition 1.6 the function s 7→ estũ(s) is ho-

lomorphic in the strip of the complex plane that is comprised between the straight lines x1 + iR
and x2 + iR. For any R > 0 let us denote by BR the boundary of the rectangle of vertices
x1 − iR, x1 + iR, x2 + iR, x2 − iR. By the classical Cauchy integral theorem,∫

BR

estũ(s)ds = 0 ∀R > 0. (2.17)

Because of (2.16) the modulus of the integral along the horizontal segment y = R is dominated by∫ x2

x1

ext|ũ(x+ iR)| dx ≤ Cex2t|x1 + iR|−a(x2 − x1),

which vanishes as R → +∞. The same holds for the modulus of the integral along the horizontal
segment y = −R. (2.17) then yields∫ x1+iR

x1−iR
estũ(s)ds−

∫ x2+iR

x2−iR
estũ(s)ds→ 0 for R→ +∞.

As both these integrals converge in the sense of the principal value as R→ +∞, hence

1

2πi
P.V.

∫
x1+iR

estũ(s) ds =
1

2πi
P.V.

∫
x2+iR

estũ(s) ds.

Remark. The inversion formula requires the evaluation of integrals along paths in the complex field
(so-called contourn integrals), and this may be cumbersome. In several cases it is more convenient to
antitransform a function by expanding it in simple fractions, and then use transform tables backward,
as we shall see in the next section.

This result also entails that the Laplace transform is injective on the whole DL.

Antitransformability. The problem of characterizing the class L(DL) of transformed functions is
nontrivial. Here we just provide a sufficient condition for existence of the inverse transform.
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Theorem 2.6. (Antitransformability-I) The restriction of a function U of complex variable to a
suitable half-plane is the Laplace transform of some function T ∈ DL if 14

∃λ ∈ R : U is holomorphic for Re(s) > λ, (2.18)

∃α > 1 : supy∈R |x+ iy|αU(x+ iy)→ 0 as x→ +∞. (2.19)

This implication cannot be inverted. For instance, the condition (2.19) fails for the function
U(s) = 1/s, which however is the transform of the Heaviside function for Re(s) > 0. 15 This example
and the theorem above yield the next result, which is often applied because of the ubiquity of the
Heaviside function.

Corollary 2.7. Let U be a complex function of complex variable which fulfills the hypotheses of
Theorem 2.6, then the functions V of the form

V (s) = U(s) +
a

s
∀s ∈ Cλ (for some a ∈ C and λ > 0), (2.20)

are also antitransformable, and L−1(V ) = L−1(U) + aH.

Therefore any function V that can be represented as a sum of the form (2.20) is antitransformable.

3 Laplace Transform of Distributions

We saw that the Laplace transform extends the Fourier transform in L1. As the latter transform can
be extended to the space S ′ of tempered distributions, one may wonder whether the Laplace transform
can also be extended to some space of distributions. We shall answer in the affirmative, under suitable
restrictions.

Let us define the class D̄L of transformable distributions with convergence abscissa λ̄: 16

D̄L :=
{
T ∈ D′ : supp(T ) ⊂ R+,∃x ∈ R : e−xtT (t) ∈ S ′t

}
, (3.1)

λ̄(T ) := inf
{
x ∈ R : e−xtT (t) ∈ S ′t

}
(∈ [−∞,+∞[) ∀T ∈ D̄L, (3.2)

Cλ̄(T ) := {s ∈ C : Re(s) > λ̄(T )} ∀T ∈ D̄L. (3.3)

We are tempted to write a formula like (1.11), simply by replacing the integral with a suitable
duality pairing 〈·, ·〉. May we set

[L̄(T )](s) = 〈T (t), e−st〉 ∀s ∈ Cλ̄(T ),∀T ∈ D̄L ? (3.4)

Here we cannot use the duality pairing between D′ and D as the support of e−st is not compact (and
the same holds for e−stH(s)). Even if T ∈ S ′, we cannot use the pairing between S ′ and S, since e−st

14 (2.19) is tantamount to ∃α > 1 : ∀ε > 0,∃L > 0 such that if Re(s) > L then |s|α|U(s)| ≤ ε.
This means that, for a suitable α > 1, |s|αU(s)→ 0 as Re(s)→ +∞, uniformly w.r.t. Im(s).
15 Incidentally, notice that, although the function U is not integrable on x + iR for x > 0, one can apply the

Riemann-Fourier formula (2.14), as there the integral is meant in the sense of the principal value.
16 As we know, the condition supp(T ) ⊂ R+ means that 〈T, v〉 = 0 for any v ∈ D such that supp(v) ⊂ ]−∞, 0[. We

use the notation S ′t to indicate that t is the independent variable; here x is just a parameter.
At variance of what we did for the Laplace transform of functions, which was defined by a Lebesgue integral, here we

do not speak of abscissa of absolute convergence, as this is meaningless for duality pairings.
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does not decay exponentially as t→ +∞ whenever Re(s) ≤ 0. On the other hand, we do not expect
to encounter any substantial difficulty for t→ −∞, since the support of T is confined to R+.

We then use the following construction. First, we fix any function ζ ∈ C∞ such that

ζ = 0 in ]−∞, a[, for some a < 0, ζ = 1 in R+.

For any T ∈ D̄L and any s ∈ Cλ̄(T ), we then select any x ∈ ]λ̄(T ),Re(s)[. Notice that e−xtT (t) ∈ S ′

because of (3.2), and e(x−s)tζ(t) ∈ S as Re(x− s) < 0. We then set

[L̄(T )](s) := S′〈e−xtT (t), e(x−s)tζ(t)〉S ∀s ∈ Cλ̄(T ), ∀T ∈ D̄L. (3.5)

It is not difficult to check that this value does not depend on the choice of x ∈ ]λ̄(T ),Re(s)[ and of
the function ζ. [Ex] This definition is thus formally equivalent to (3.4), which may be regarded just
as a short-writing of the rigorous formula (3.5).

Here is an important example:

[L̄(δa)](s) = e−as ∀s ∈ C,∀a ≥ 0. (3.6)

Notice that δa := δ0(· − a) is causal iff a ≥ 0.
As L1 ⊂ S ′, the transform L̄ of distributions extends that of functions (that we denoted by L):

DL ⊂ D̄L, (3.7)

λ̄(u) ≤ λ(u) i.e. Cλ(u) ⊂ Cλ̄(u) ∀u ∈ DL, (3.8)

L̄(u)|Cλ(u) = L(u) ∀u ∈ DL. (3.9)

Moreover, the use of duality pairing instead of the (Lebesgue) integral overcomes the restriction of
absolute convergence.

We shall also see that:
(i) there exists u ∈ L1

loc such that u ∈ D̄L \DL — thus L 6= L̄
∣∣
D̄L∩L1

loc
;

(ii) there exists u ∈ DL such that λ̄(u) < λ(u) — thus L 6= L̄
∣∣
DL

, despite of (3.9).

Alike what we saw for functions, the Laplace transform of distributions is holomorphic.

Proposition 3.1. For any T ∈ D̄L, the function L̄(T ) is holomorphic in Cλ̄(T ). []

Anyway (1.36) and (1.37) do not take over to distributions; e.g., L̄(Dδ0) = s for any s ∈ C.
Theorems 1.1, 1.2, 1.3, 1.4 also hold in D̄L. The same applies to the inversion formula, under

hypotheses that here we do not display.

Next we extend the transform of the derivative, under weaker hypotheses and by a simpler for-
mula than for functions. We remind the reader that by D we denote the derivative in the sense of
distributions.

Theorem 3.2. (Laplace transform of the distributive derivative) For any T ∈ D̄L,

DT ∈ D̄L, λ̄(DT ) ≤ λ̄(T ), [L̄(DT )](s) = s[L̄(T )](s) ∀s ∈ Cλ̄(T ). (3.10)

More generally, for any k ∈ N,

DkT ∈ D̄L, λ̄(DkT ) ≤ λ̄(T ), [L̄(DkT )](s) = sk[L̄(T )](s) ∀s ∈ Cλ̄(T ). (3.11)
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Proof. Because of Theorem 1.1, (3.10) stems from the analogous formula for the Fourier transform
of distributions. (3.11) then follows by induction. tu

For instance,

[L̄(Dkδa)](s) = ske−as ∀s ∈ C, ∀a ≥ 0,∀k ∈ N. (3.12)

Let u ∈ DL and assume that u is absolutely continuous in ]0,+∞[, that u′ ∈ DL and that there
exists u(0+) := limt→0+ u(t) ∈ C. By part (ii) of Theorem 2.1) then Du = L̄(u′ + u(0+)δ0), and we
get

s[L̄(u)](s)
(3.10)

= L̄(Du) = L̄(u′ + u(0+)δ0) = L(u′) + u(0+) in Cλ̃(u). (3.13)

We thus retrieve (2.3).

* Remarks. (i) There exists u ∈ DL such that λ̄(u) < λ(u). E.g., let us set

v(t) = (sin et)H(t) ∈ DL whence u(t) := Dv(t) = et(cos et)H(t) ∈ DL.17

It is easy to check that λ(v) = 0 and λ(u) = 1. As

λ̄(u)
(3.10)

≤ λ̄(v)
(3.8)

≤ λ(v) < λ(u),

we conclude that in this case λ̄(u) < λ(u). 18

(ii) There exist locally integrable functions that are elements of D̄L but not of DL, that is, D̄L ∩
L1
loc 6⊂ DL. E.g.,

v(t) = (sin et
2
)H(t) ∈ DL(⊂ D̄L) yields u(t) = Dv(t) = 2tet

2
(cos et

2
)H(t).

By Theorem 3.2, u ∈ D̄L ∩ L1
loc (although at first sight it might not seem so...). But u 6∈ DL, as the

Laplace integral of this function does not converge absolutely. tu

Theorem 3.3. (Antitransformability-II) The restriction of a function U of complex variable to a
suitable half-plane is the Laplace transform of some distribution T ∈ D̄L iff

∃λ ∈ R : U is holomorphic for Re(s) > λ, (3.14)

∃M > 0,∃a ≥ 0 : |U(s)| ≤M(1 + |s|)a ∀s ∈ Cλ. (3.15)

Notice that this theorem characterizes the transform of distributions, whereas Theorem 2.6 just
provides a sufficient condition for a function to be the transform of a function. The reader will notice
how far is the condition (2.19) from (3.15); anyway the former entails the latter.

Henceforth we shall drop the bar, and write L, DL, λ, instead of L̄, D̄L, λ̄. The context will make
clear whether we refer to the Laplace transform of functions or of distributions.

17 Notice that u ∈ S ′, despite of the occurrence of the exponential, since it is the derivative of a function of S ′. Actually
u has no genuine exponential growth, because of the oscillating factor.

18 The abscissa of absolute convergence of the a.e. derivative may thus be smaller than that of a transformable function,
at variance with what we saw for the Laplace transform of distributions (where of course we deal with derivative in the
sense of distributions).
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Laplace antitransform of rational functions. Let F be a rational function of s, namely the
quotient of two polynomials with complex coefficients:

F (s) =
P (s)

Q(s)
=

∑m
j=0 ajs

j∑n
`=0 b`s

`
(am, bn 6= 0, m, n ∈ N). (3.16)

If m ≥ n then F can be rewritten in the form

F (s) =
m−n∑
k=0

cks
k +

P̃ (s)

Q(s)
=: G(s) +R(s) for Re(s) > λ; (3.17)

here cm−n = am/bn 6= 0, c0, ..., cm−n−1 ∈ C, and P̃ (s) =
∑m̃

j=0 ãjs
j is a polynomial of degree m̃ < n.

These coefficients may be determined via the identity P (s) = G(s)Q(s) + P̃ (s), that is,

m∑
j=0

ajs
j =

(
m−n∑
k=0

cks
k

)(
n∑
`=0

b`s
`

)
+

m̃∑
j=0

ãjs
j for Re(s) > λ. (3.18)

By eliminating the common factors (if any), we may assume that the polynomials P̃ (s) and Q(s) are
mutually prime.

Here the abscissa λ is just any real number that is larger than the real part of all roots of Q. By
Theorem 3.3 it is straightforward to antitransform the function G in the framework of distributions:

G(s) =
m−n∑
k=0

cks
k for Re(s) > λ ⇒ L−1(G) =

m−n∑
k=0

ckD
kδ0. (3.19)

We are left with the calculus of the antitransform of the proper rational function R(s), which is
also of the form (3.16) but with m̃ < n. Let {zh : h = 1, ..., `} be the distinct complex roots of the
polynomial Q(s), each of multeplicity rh; thus r1 + ... + r` = n. As Q(s) = bnΠ`

h=1(s − zh)rh for
h = 1, ..., `, the function

R(s) =
P̃ (s)

bnΠ`
h=1(s− zh)rh

(3.20)

is defined for any s ∈ C different from all zhs; hence R(s) is defined whenever Re(s) > max {Re(zh) :
h = 1, ..., `}. This function can be decomposed into a sum of simple fractions:

R(s) =
∑̀
h=1

rh∑
k=1

chk
(s− zh)k

, (3.21)

via so-called partial fraction expansion. The family of complex coefficients {chk} can be identified by
rewriting each addendum of the right member as a sum of fractions, all with the same denominator
Π`
h=1(s− zh)rh .

For instance, let 1+s+is2

(s−1)3
be one of the addenda of R(s). By setting

1 + s+ is2

(s− 1)3
=

a

s− 1
+

b

(s− 1)2
+

c

(s− 1)3
(3.22)
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with a, b, c ∈ C to be determined, we get

1 + s+ is2

(s− 1)3
=
a(s− 1)2 + b(s− 1) + c

(s− 1)3
=
as2 − 2as+ a+ bs− b+ c

(s− 1)3
(3.23)

whence a = i, b = 1 + 2i, c = 2 + i.

By (1.21) and (1.26),

L
( tk−1

(k − 1)!
eztH(t)

)
=

1

(s− z)k
∀z ∈ C, ∀k ∈ N \ {0}; (3.24)

by antitransforming (3.21) one then gets the formula

[L−1(R)](t) =
∑̀
h=1

rh∑
k=1

chk
tk−1

(k − 1)!
ezhtH(t) ∀t > 0. (3.25)

We have thus proved the following result.

Theorem 3.4. (of Heaviside) The quotient of any pair of polynomials, F (s) = P (s)
Q(s) (cf. (3.16)), is

the Laplace transform of the distribution T = L−1(G) +L−1(R), see (3.19) and (3.25). T is a regular
distribution (i.e., a function) iff the degree of P (s) is strictly smaller than that of Q(s).

* Heaviside formula for simple roots. Let us assume that all the roots zh of the polynomial Q(s)
are simple, i.e., Q(s) = bnΠn

n=1(s− zh), so that the expansion in simple fractions of R reads

R(s) =
P̃ (s)

Q(s)
=

n∑
h=1

µh
s− zh

. (3.26)

Next we identify the complex coefficients µ1, ..., µn. For any k, as Q(zk) = 0 we have

R(s)(s− zk) =
P̃ (s)

[Q(s)−Q(zk)]/(s− zk)
= µk +

∑
h6=k

µh
s− zh

(s− zk) for k = 1, ..., n. (3.27)

By passing to the limit as s→ zk, we get

lim
s→zk

R(s)(s− zk) =
P̃ (zk)

Q′(zk)
= µk for k = 1, ..., n. (3.28)

The formula (3.26) thus yields the following classical result.

Theorem 3.5. (Heaviside formula) If the roots zh of the polynomial Q(s) are all simple, then

[L−1(P̃ /Q)](t) =
n∑
h=1

P̃ (zh)

Q′(zh)
ezhtH(t) ∀t > 0. (3.29)

* Case of multiple roots. For instance, let us assume that Q(s) = (s− z)r for some z ∈ C and an
integer r ≥ 1, and let us look for an expansion in simple fractions of the form (3.26). As

[Dr−k
s (s− zh)rR(s)]s=zh = (r − k)!chk for k = 1, ..., r, h = 1, ..., `, (3.30)
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we can identify the complex coefficients of (3.25):

chk =
1

(r − k)!
[Dr−k

s (s− zh)rR(s)]s=zh for k = 1, ..., r, h = 1, ..., `. (3.31)

Exercises
— Check that the function L−1(R) is bounded if Re(zh) < 0 for any h, and that if L−1(R) is

bounded then Re(zh) ≤ 0 for any h.
— Check u ∗Dnδ0 = Dnu for any u ∈ L1

loc and any n ∈ N.

4 Laplace Transform and Differential Equations

Let us consider the initial-value problem for an ODE, for instance a second-order equation with
constant complex coefficients. Let us fix α, β, γ, y0, y1 ∈ C (α 6= 0), a function f : R+ → C, and let
us search for a function y : R+ → C such that{

P (d/dt)y := αy′′ + βy′ + γy = f(t) for t > 0,

y(0) = y0, y′(0) = y1.
(4.1)

For α, β, γ > 0, this is the equation of the damped harmonic oscillator, and has a large number
applications in physics, engineering and many other disciplines.

Formulation of the Cauchy problem in L1
loc. Let us assume that f ∈ DL and search for y ∈ DL.

Assuming that such a solution actually exists and is Laplace-transformable, let us transform both
members of the equation, and set Y := L(y) and F := L(f). For the moment let us proceed formally,
postponing the determination of the half-plane of convergence of the transforms. Reminding that

L(y′) = sL(y)− y(0),

L(y′′) = sL(y′)− y′(0) = s2L(y)− sy(0)− y′(0),
(4.2)

we get the following equation in frequency:

α
[
s2Y (s)− sy0 − y1

]
+ β

[
sY (s)− y0

]
+ γY (s) = F (s) for Re(s) > λ(f). (4.3)

Setting
P (s) := αs2 + βs+ γ, Φ(s) := αy0s+ αy1 + βy0, (4.4)

we rewrite the transformed equation (4.3) in the form

P (s)Y (s) = F (s) + Φ(s) for Re(s) > λ(f). (4.5)

P (s) is called the characteristic polynomial of the differential operator P (d/dt); denoting by s1, s2 ∈ C
its (possibly nondistinct) roots, we have

P (s) 6= 0 for Re(s) > max {Re(s1),Re(s2)}.

The equation (4.7) is thus equivalent to

Y (s) =
F (s)

P (s)
+

Φ(s)

P (s)
for Re(s) > max {Re(s1),Re(s2), λ(f)} =: M, (4.6)
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and by antitransforming both members we get the solution of the problem (4.1):

y = L−1
(F (s)

P (s)

)
+ L−1

(Φ(s)

P (s)

)
in R+. (4.7)

The first term depends on the initial data, and represents the free response of the system. The second
term depends on the source term f , and represents the forced response.

By the Convolution Theorem 1.4,

L−1
(F (s)

P (s)

)
= L−1

( 1

P (s)

)
∗ L−1(F (s)) = L−1

( 1

P (s)

)
∗ f. (4.8)

and thus

y = L−1
( 1

P (s)

)
∗ f + L−1

(Φ(s)

P (s)

)
. in R+. (4.9)

The functions 1/P (s) and Φ(s)/P (s) fulfill the assumptions of the Antitransformability Theo-
rem 2.6; hence y ∈ DL and λ(y) ≤M . 19 This justifies the above developments.

Reformulation of the Cauchy problem in D′. First we show that the Cauchy problem (4.1) can
be rewritten as a single equation in the sense of distributions.

If y = y(t) is causal and absolutely continuous in ]0,+∞[ and if there exists y(0+) ∈ C, then
y− y(0+)H is absolutely continuous in R. Therefore, still denoting by Dy the derivative in the sense
of distributions and by dy/dt or y′ the almost everywhere derivative,

D[y − y(0+)H(t)] = y′ i.e., Dy = y′ + y(0+)δ0 in D′. (4.10)

Analogously, if y′ is also absolutely continuous in ]0,+∞[ and if there exists y′(0+) ∈ C, then

D[y′ − y′(0+)H(t)] = y′′ i.e., D(y′) = y′′ + y′(0+)δ0 in D′. (4.11)

Hence

D2y = D(Dy)
(4.10)

= D(y′) + y(0+)Dδ0
(4.11)

= y′′ + y(0+)Dδ0 + y′(0+)δ0 in D′. (4.12)

Defining the operator

P (D) := αD2 + βD + γI in D′, (4.13)

(4.10) and (4.12) yield the formula

P (D)y = αy′′ + βy′ + γy + αy(0+)Dδ0 + [αy′(0+) + βy(0+)]δ0 in D′. (4.14)

This allows one to rewrite the Cauchy problem (4.1) as a single equation on the whole R in the sense
of distributions for the causal function y:

P (D)y = f(t) + αy0Dδ0 + [αy1 + βy0]δ0 in D′. (4.15)

Remark. A comparison with the solution of ODEs on the whole line via Fourier transform is in order,
see [Fourier chapter].

19Restrictions on the convergence abscissa have no effect on the properties of the solution.
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Use of the Laplace transform in D′. As we just saw, distributions allow one to include the initial
data into the forcing term. This allows us to provide a more synthetical approach to the Cauchy
problem.

The second member of the equation (4.7) reads

G(s) := F (s) + Φ(s) = F (s) + αy0s+ αy1 + βy0 for Re(s) > λ(f). (4.16)

Notice that by transforming the equation (4.15) the same result is obtained.
The equation (4.7) also reads P (s)Y (s) = G(s), and has the solution

Y (s) =
G(s)

P (s)
for Re(s) > max {Re(s1),Re(s2), λ(f)}. (4.17)

Let us apply the antitransform L−1 to this equality. Recalling that

λ(Dnδ0) = −∞, L(Dnδ0) = sn ∀n ∈ N, (4.18)

we have
L−1(αy0s+ αy1 + βy0) = αy0Dδ0 + (αy1 + βy0). (4.19)

Setting h = L−1(1/P (s)), we thus get the solution of problem (4.1) in the sense of distributions:

y = L−1
( 1

P (s)
(F + Φ)

)
= L−1

( 1

P (s)

)
∗ [L−1(F ) + L−1(Φ)]

= h ∗ [f + αy0Dδ0 + (αy1 + βy0)δ0]

= h ∗ f + αy0Dh+ (αy1 + βy0)h in R+.

(4.20)

We thus retrieved (4.9), and obtained a more explicit representation of the solution.

The transfer function. The approach of the linear system theory can be applied to initial-value
problems via the Laplace transform, along a line that is reminiscent of what we saw for differential
equations on the whole R via the Fourier transform. In this case the solution y linearly depends on
the initial data y0, y1 and on the forcing term f . This is more clear by using the Laplace transform in
D′.

Let us first assume that
y0 = y1 = 0, (4.21)

so that the system that maps the input f to the output u is linear (rather than affine). 20 In the
terminology of system theory, the solution operator L : f 7→ y is called a continuous filter. Here we
just deal with the filter that is associated to problem (4.1); however this analysis can be extended to
higher order problems, and to a much more general set-up — including partial differential equations,
integro-differential equations, and so on.

Let h := L(δ0) be the response in time to the unit impulse δ0, that is,

(P (D)h :=) αD2h+ βDh+ γh = δ0 in D′(R), (4.22)

or also, because of (4.9),

h = L−1
( 1

P (s)

)
∗ δ0 = L−1

( 1

P (s)

) (
∈ DL). (4.23)

20 If the initial data are not homogeneous, however via the approach of distributions we can retrieve a linear system
by including the initial data into the forcing term.
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By applying the transform L, we get the response in frequency to the unit impulse:

[L(h)](s) = [L(L(δ0))](s) =
1

P (s)
in CL(δ0),

The function [L(h)](s) = 1/P (s) is called the transfer function of the linear system L in frequency, or
also the spectrum of the system L. The antitransform h = L−1(1/P (s)) is thus also called the transfer
function in time of the system.

Because of (4.22), mathematicians call h the fundamental solution of the differential equation
P (D)u = f . This is nonunique, as it is determined up to the sum of a solution of the homogeneous
equation, P (D)v = 0. Anyway h is the unique causal solution, 21 so that for the Cauchy problem
(4.1)

the regular function h is the unique fundamental solution in D̄L,

(4.23) is the unique solution in D̄L of the homogeneous Cauchy problem (4.1), (4.21).
(4.24)

Note that this is at variance with what we saw via the Fourier transform for the problem on the whole
R, cf. (??)[Fourier chapter].

Two examples. Let us fix any k > 0, any f ∈ DL, and consider the differential equations

y′′1 − k2y1 = f(t), y′′2 + k2y2 = f(t); (4.25)

the second one represents harmonic motion. These are respectively associated to the operators

P1(D) := D2 − k2I, P2(D) := D2 + k2I (I: identity operator),

with characteristic polynomials

P1(s) := s2 − k2, P2(s) := s2 + k2 (s ∈ C),

and with respective roots
s11, s12 = ±k, s21, s22 = ±ik.

The general solution yj (j = 1, 2) of the corresponding problem (4.1) has the form (4.9), with
convergence abscissa

λ(y1) ≤ max {k, λ(f)}, λ(y2) ≤ max {0, λ(f)},

and transfer function in time

h1(s) = L−1
( 1

P1(s)

)
=

1

k
L−1

( k

s2 − k2

)
=

sinh kt

k
H(t),

h2(s) = L−1
( 1

P2(s)

)
=

1

k
L−1

( k

s2 + k2

)
=

sin kt

k
H(t).

(4.26)

Notice that h1 ∈ D′ \ S ′ and h2 ∈ S ′.
By (4.20), therefore

yj = hj ∗ f + αyj(0)Dhj + αy′j(0)hj in R+, for j = 1, 2. (4.27)

21 To prescribe causality is equivalent to prescribing the jump at t = 0 of the function and of its derivatives.
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* Higher-order equations. The previous analysis can be extended to initial-value problems for
equations of any order M ≥ 1.

Let α0, ..., αM , y0, ..., yM−1 ∈ C (αM 6= 0), f : R+ → C, and let us search for y : R+ → C such
that 

M∑
m=0

αmD
my = f(t) for t > 0

Dmy(0) = ym for m = 0, ...,M − 1.

(4.28)

Let us assume that f, y ∈ DL, set Y := L(y) and F := L(f), and apply the Laplace transform to
(4.28). Recalling the differentiation Theorem 2.2, (4.28) yields

M∑
m=0

αms
mY (s)−

M∑
m=0

αm

m−1∑
n=0

sm−1−nyn = F (s) for Re(s) > max {M,λ(f)}. (4.29)

(As we saw for the second-order equation, here also we might formulate the Cauchy problem as a single
equation in the sense of distributions, getting of course the same transformed equation.) Defining

P (s) :=
M∑
m=0

αms
m (characteristic polynomial),

Φ(s) :=
M∑
m=0

αm

m−1∑
n=0

sm−1−nyn,

(4.30)

the equation (4.29) reads

P (s)Y (s) = F (s) + Φ(s) for Re(s) > λ(f). (4.31)

Denoting by s1, ..., sN ∈ C the (possibly nondistinct) complex roots of P (s),

P (s) 6= 0 for Re(s) > M := max {Re(si) : i = 1, ..., N}.

The equation (4.29) is thus equivalent to

Y (s) =
F (s)

P (s)
+

Φ(s)

P (s)
for Re(s) > max {M,λ(f)}.

Defining the transfer function in time h := L−1(1/P (s)), the Convolution Theorem 1.4 and (4.30)2

yield

y = L−1
( 1

P (s)
F
)

+ L−1
( 1

P (s)
Φ
)

= h ∗ L−1(F ) + h ∗ L−1(Φ)

= h ∗ f +
M∑
m=0

αm

m−1∑
n=0

yn h ∗Dm−1−nδ0

= h ∗ f +
M∑
m=0

αm

m−1∑
n=0

yn D
m−1−nh in R+.

(4.32)

This is the sum of the free and forced responses. The function y has convergence abscissa λ(y) ≤
max {M,λ(f)}. This justifies the previous transformations.
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This discussion can be extended in several directions: e.g., the Cauchy problem for systems of
differential equations, equations and systems of differential equations with delay, and so on.

* Linear systems of first-order equations. Let

A ∈ CN×N (N ≥ 1), f : R+ → CN , f ∈ L1
loc, u0 ∈ CN ,

and consider the following first-order vectorial Cauchy problem, for the unknown function u : R+ →
CN : {

Dtu = A · u+ f in R+,

u(0) = u0.
(4.33)

By extending u and f to causal (vectorial) functions, this problem can be formulated as the single
equation

Dtu = A · u+ f + u0δ0 in D′(R)N . (4.34)

Let us assume that f and u are both Laplace-transformable (componentwise), and set U = L(u),
F = L(f). By transforming the equation (4.34), we get

(sI −A) · U(s) = F (s) + u0 for Re(s) > max
j=1,...,N

{λ(uj), λ(fj)}, (4.35)

that is, defining the resolvent matrix R(s) = (sI −A)−1,

U(s) = R(s) · [F (s) + u0] for Re(s) large enough. (4.36)

More precisely, defining the (possibly nondistinct) complex eigenvalues s1, ..., sN of the matrix A,
(4.36) holds for Re(s) > maxj=1,...,N {λ(uj), λ(fj),Re(sj)}.

Let us now introduce the (causal) matrix antitransform S = L−1(R) : R → CN×N , namely, the
solution of the problem

(sI −A)−1 = [L(S)](s) for Re(s) > max
j=1,...,N

{Re(sj)}. (4.37)

Antitransforming the equation (4.36) we get u(t) = L−1(R) ∗ L−1(F + u0). We thus retrieve the
classical formula of variation of parameters:

u(t) = S(t) ∗ f(t) + S(t) ∗ (u0δ0) =

∫ t

0
S(t− τ) · f(τ) dτ + S(t) · u0 ∀t ∈ R. (4.38)

The function S represents the semigroup that is determined by the matrix A. 22 The equations
(4.37) and (4.38) can then be interpreted as

the resolvent (sI −A)−1 of the semigroup S(t)

coincides with the Laplace transform of that semigroup.
(4.39)

Notice that, using the definition of exponential of a matrix,

S(t) = eAtH(t) =
∞∑
n=0

Antn

n!
H(t) (∈ CN×N ) ∀t ∈ R. (4.40)

22 A semigroup is a family of operators S : [0,+∞[→ L(X) (L(X) being the space of linear and continuous operators
on a Banach space X) such that S(t1 + t2) = S(t1) ◦ S(t2) for any t1, t2 ≥ 0.
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* Linear systems of higher-order equations. Let A, f be as above, m ∈ N, an, u
n ∈ C for

n = 0, ...,m− 1 (am 6= 0), and consider the following vector Cauchy problem of order m:{ ∑m
n=0 anD

nu(t) = A · u(t) + f(t) for t > 0,

Dnu(0) = un for n = 0, ...,m− 1.
(4.41)

By extending u and f to causal vector functions, this problem can be formulated as the single vector
equation

m∑
n=0

anD
nu(t) = A · u(t) + f(t) +

m−1∑
n=0

anunD
m−1−nδ0 in D′(R)N . (4.42)

Let us assume that f, y ∈ DL, set U = L(u) and F = L(f); let us also define the characteristic
polynomial P (s) and the polynomial Φ(s) as follows:

P (s) =

m∑
n=0

ans
n, Φ(s) =

m∑
n=1

n−1∑
j=0

anujs
n−h−1 ∀s ∈ C. (4.43)

By transforming the equation (4.43), we get

[P (s)I −A] · U(s) = F (s) + Φ(s) for Re(s) > max {λ(u), λ(f)}, (4.44)

that is, defining the matrix function R(s) = [P (s)I −A]−1,

U(s) = R(s) · [F (s) + Φ(s)] for Re(s) large enough. (4.45)

Let us introduce the matrix antitransform S = L−1(R) : R → CN×N , that is, the solution of the
problem

[P (s)I −A]−1 = [L(S)](s) for Re(s) large enough. (4.46)

Antitransforming the (4.45), we get

u = S ∗ f + S ∗ L−1(Φ) = S ∗ f + S ∗
m∑
n=1

n−1∑
j=0

anujD
n−h−1h in R. (4.47)

This approach can be extended to linear evolutionary PDEs, e.g. of the form Dtu + Au = f ; in
this case the associated stationary operator A, in an infinite-dimensional space (typically a Sobolev
space).


	Laplace Transform of Functions
	Further Properties of the Laplace Transform
	Laplace Transform of Distributions
	Laplace Transform and Differential Equations

